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Introduction - Noble Liquid Calorimetry

Noble liquid calorimetry is a well proven technology, successfully operated/operating in H1,
NA48/62, ATLAS...

Very promising candidate for future FCC experiments
R&D direction: optimization for particle flow reconstruction on top of conventional calorimetry

Higher granularity

Higher number of read-out channels

Development of high-density signal feedthroughs

FCC-hh detector

HCal barrel/extended barre

Readout
electrode

From: M. Aleksa, Calorimeters for the FCC-hh (https://arxiv.org/abs/1912.09962)
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https://arxiv.org/abs/1912.09962

Introduction - The feedthroughs of ATLAS

. Reference: signal feedthroughs of the ATLAS —
LAr EM calorimeters
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From: ATLAS LAr Unit, Liquid Argon Calorimeter — Technical Design Report 32 signal wires/cable

From: D. Makowiecki et al., Signal feedthroughs for the ATLAS barrel and endcap calorimeters

. Goal: 1920 wires/feedthrough (ATLAS) - ~20 000 wires/feedthrough (x10 more)
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Introduction - 2 solutions considered

a) Large surface feedthroughs b) High-density flanges
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Structures with high density of slits allowing the strip
cables to pass = connectors-less solution

« Higher area dedicated
to signal extraction

* Same design for
warm and cold side

Connector x3 larger than strip cable




High-density flanges

. If the electronics sits outside of the cryostat (warm electronics), one needs
high-density feedthroughs - high-density connector-less feedthroughs

Conceptual design:

Structural material:

* Thickness 15-17 mm

+ Slits (length: 30 mm, width: 1 mm) with
2 - 3 mm between slits

l

106 mm

Stainless steel body flange
(2 = 600 mm, thickness = 20 mm)

7

Space for heaters
(width = 24 mm)

ww G/

Flat flexible strip cable

Pumping connection

2 sealing solutions:

» seal between cable and structure

32 signal wires/cable » seal between structure and body flange

machined shielded strip cables
(microscope image)




Selection of components

1. Structural material:

. Samples thermally shocked in LN, (77 K) + CT scans before and after
. Material candidates:

cracks

Accura 48

i |65 mm

. Accura 25 (3D-printed epoxy resin)
. Accura 48 (3D-printed epoxy resin) X

. Silastic M (silicone rubber — 3D-printed mold)
. G10 (fiberglass laminate in epoxy resin)
. G11 (fiberglass laminate in epoxy resin)

. MY750 (araldite epoxy resin — 3D-printed mold)

. Main advantages:

. Fabrication processes
(mechanical and financial viability)

. Lightness
. Low conductivity

From CERN Polymer Laboratory




Selection of components

2.  Seal between cable and structural material: glue/resin selection

. Samples thermally shocked in LN, (77 K) several times and leak tested at room temperature
. Glue/resin candidates:
. DP 190
. Eccobond 286 ‘
. CAF-4 = Glue/resin

. RESINPRO

. Epo-tek T7110 - easy to manipulate
. Araldite 2011 - more viscous and difficult to manipulate
. Stycast

Flexible Kapton® strip




Selection of components

Seal between structural material and body flange: mechanical sealing solution

Strip cable Glue
Screw \
Washer \
Compression plate \

/ / ‘ Stainless Steel

Structural material body flange

3.

From COMPASS experiment - CERN

Indium wire @ 1.5 mm

Machined groove

N Q
. Structural material
Compression plate

Stainless Steel body flange
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Experimental facility

Pumping system DAQ

and leak detector

. Experimental facility:

. To perform pressure and leak test at
room and low temperature

Test conditions:

» Temperature: 87 K (operating conditions ATLAS)

* Pressure: 3.5 bar (breaking vacuum accident ATLAS)
+ Leak-tightness: < 108 mbar.l/s

From: ATLAS LAr Unit, Liquid Argon Calorimeter — Technical Design Report
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Experimental facility




Experimental results - example

. Tests description:

Leak and pressure test at

Leak and pressure test at
Warming up process (1-2

w0 b=

. Example:

Stainless-steel compression

room T° (30 min)

Cooling down process (~7 hours)
low T° (30 min)
days)

Kapton® strips with
epo-tek T7110 glue

plate with screws (M6)

Indium wire (& 1.5 mm)
(outer side)

Structural material: G10




Experimental results - example

Step 1: Pressure and leak test at room T°

Temperature sensor PT800
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Vacuum: 8.51x104 mbar
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Step 2: Cooling down
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Experimental results - example

Step 3: Pressure and leak test at low T° Step 4: Warming up
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Experimental results - summary

. Summary of samples tested:

Sample Experimental results

MY750 + Kapton strips + glue

epo-tek + indium seal Leaks detected

Accura25 + Kapton strips + glue

epo-tek + indium seal Leaks detected

G10 + Kapton strips + glue

epo-tek + indium seal No leakage (2 cycles)

G11 + Kapton strips + glue
epo-tek + indium seal No leakage (2 cycles) Sample A

. Strip cable of from ATLAS also tested:

. Thermally shocked in LN, (77 K) up to 3 times and leak tested in
stainless steel circular samples:
Sample A (entire cable) > No leakage
Sample B (cut piece of cable) > No leakage

Sample B




Final design studies

. Up to 4 different flange designs studied

(going from 16 000 to 30 000 signal wires/flange)

Design 1:
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21 760 signal wires (slits every 2 mm)
16 640 signal wires (slits every 3 mm)

Design 2:

21 440 signal wires (slits every 2 mm)
16 320 signal wires (slits every 3 mm)

Design 3:

30 016 signal wires (slits every 2 mm)
22 848 signal wires (slits every 3 mm)

Design 4:

30 016 signal wires (slits every 2 mm)
22 848 signal wires (slits every 3 mm)




Final design studies

. 2 final designs selected:

. Design 1: up to 21760 signal wires (2 mm) -
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. Design 3: up to 30 016 signal wires (2 mm)

Outer side
Inner side
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15 mm

Optimized dimensions




Final design studies

. Mechanical stress simulations:
. Maximum deflection:

295 K 77K
Design 1 521.4 ym 474.8 um
Design 3 760.3 ym 688.3 um

. Maximum Von Mises stress:

295K 77K
Design 1 94.72 MPa 94.54 MPa
Design 3 140.6 MPa 140.1 MPa

max

Max. deflection: 0.76 mm (ATLAS FT 0.68 mm with g = 300 mm)
Max. Von Mises Stress: 140 MPa (below yield and tensile strength of components)

From: O. Reinicke (TUB Berlin)




Conclusions

Summary:

Main components have been studied and selected
(structural material, glue and mechanical seal)

Rmk: also studies performed to analyse the failing samples (CTE measurements)

. Experimental setup has been designed and constructed to simulate extreme conditions
in the LAr calorimeter (also used to test carbon fiber cryostat prototypes - internal collaboration)

. Experimental tests have shown the validation of the concept (G10, G11 but also Stainless-Steel)
(tests at “extreme” conditions: cooling down times, < 87K, GHe)

. Mechanical simulations have shown the viability of different flange designs




Conclusions

Future steps:

Size optimization of different components (distance between slits, SS main grid size, etc.)

Cable design and optimization
(R&D ongoing on PCB electrodes design with noise and cross-talk mitigation — F. Brieuc)

Other options:

. High-density flange design with very thin connectors (~ 1.27 mm)

. Other signal transfer technologies (increasing available surface, optical fibers, wireless
solutions...)




Thank you for your attention!
Questions?
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