

Simulations

Shower reconstruction

Particle identification

Result

Comparing LAr/LKr ECAL design

Conclusion

au Decay Mode Identification in a Liquid Argon Electromagnetic Calorimeter at the FCC-ee

Katinka Wandall-Christensen

Supervisor: Mogens Dam

Niels Bohr Institute University of Copenhagen

27 January 2022

Simulations

Shower reconstructio

identificatio

Resuit

LAr/LKr ECAL design

Conclusion

- Introduction
- 2 Simulations
- Shower reconstruction
- 4 Particle identification
- 6 Results
- 6 Comparing LAr/LKr ECAL designs
- Conclusion

Simulations

Shower reconstruction

Particle

Results

Comparing LAr/LKr ECAL design

Conclusion

Introduction

au polarisation measurements

Introduction

Simulations

Shower reconstructio

Particle identification

Result

Comparing LAr/LKr ECAL design

Conclusion

Motivation:

Improving the precision of $\sin^2(\theta_W)$ and testing the $e-\tau$ universality

au polarisation measurements

Introduction

Simulations

Particle

Resul

Comparing LAr/LKr ECAL design

Conclusion

Motivation:

Improving the precision of $\sin^2(\theta_W)$ and testing the e- au universality

Requirements:

- Precision measurements
 - \Rightarrow Need a clean and precise separation of τ final states
- Largest sensitivity to polarisation in $\pi\,n\pi^0$ modes, with $n\geq 0$. In particular the $\pi^-\nu$ and $\rho^-\nu\to\pi^-\pi^0\nu$ have the largest sensitivities to P_τ

Decay modes	Branching fraction $[\%]$
$e^- \bar{\nu_e} \nu_{\tau}$	17.82 ± 0.04
$\mu^- \bar{\nu_\mu} \nu_\tau$	17.39 ± 0.04
$h^- \nu_{\tau}$	11.51 ± 0.05
$h^- \pi^0 \nu_{\tau}$	25.93 ± 0.09
$h^{-} 2\pi^{0} \nu_{\tau}$	9.48 ± 0.10
$h^{-} 3\pi^{0} \nu_{\tau}$	1.18 ± 0.07
$h^{-} 4\pi^{0} \nu_{\tau}$	0.16 ± 0.04
3 prongs	15.20 ± 0.06

Table: The dominant decay modes and their branching fractions of the τ lepton. h^- represents a K^- or a π^-

 \Rightarrow Need a precise π^0 counting scheme

Project goal

Introduction
Simulations

snower reconstruction Particle

Result

Comparing LAr/LKr ECAL design

Conclusion

Investigate the performance of the LAr/Pb ECAL proposed for the FCC-ee wrt. τ polarisation measurements by trying to achieve the best possible τ decay mode identification. This demands:

- A precise π^0 reconstruction scheme
- A separation of single γ and merged π^0 's

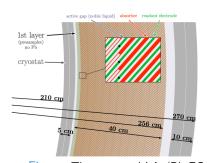


Figure: The proposed LAr/Pb ECAL barrel design [arXiv:2109.00391]

Detector demands

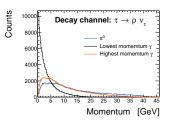
Introduction

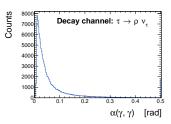
Simulations

reconstruction

identificatio

Result


Comparing LAr/LKr ECAL design


Conclusion

- Sensitivity to low energy photons. This includes a minimization of noise to enhance precision in π^0 counting
- High granularity to detect both π^0 daughter photons

Angle between two photons of equal energy:

$$\alpha(\gamma, \gamma) = \frac{m_{\gamma, \gamma}}{E_{\gamma}}$$
 (1

Particle showers

Introduction

Shower reconstructio

Particle identification

Resul

Comparing LAr/LKr ECAL designs

Electromagnetic showers:

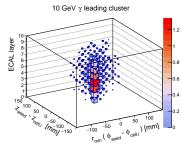


Figure: Cluster from 10 GeV photon in the LAr ECAL

- Mostly regular in shape
- Molière radius (R_M) : Radius of cylinder on avg. containing 90% of shower (material dependent)

Hadronic showers:

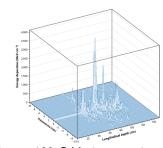


Figure: 100 GeV pion creating a hadronic shower in Pb [10.1146/annurev.nucl.012809.104449]

- Initial MIP behaviour
- Cascades of secondary particles → irregular shape with satellites

7/37

Simulations

reconstruction

identificati

Rosults

Comparing LAr/LKr FCAL design

Conclusion

Simulations

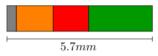
Simulated geometry

muodactioi

Simulations

Shower reconstruction

dentification


rtesuii

LAr/LKr ECAL designs

Conclusion

Simplified geometry:

- 70 concentric cylinders
- PCB simulated by making glue layer thicker and an average material constant is used

 $Steel: 0.37\ mm$ $Glue/PCB: 1.44\ mm$ $Pb: 1.389\ mm$ $LAr: 2.50\ mm$

• Depth: $20.6X_0$

Event files:

- Single particle gun. Particles generated at $\phi=0$, $\theta=\frac{\pi}{2}$
- Full τ decay. Produced at $\theta = \frac{\pi}{2}$.

⇒ All Geant4 hits saved to root output file

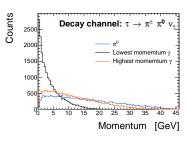
DISCLAIMER

Simulations

C.

Particle

Resul


Comparing LAr/LKr ECAL designs

Conclusion

It was discovered late in the thesis process that the intermediate ρ meson or a_1 is not produced

Consequences for au o
ho
u decays:

- 3-body decay instead of 2-body \rightarrow enhanced $\alpha(\pi^{\pm},\gamma)$
- Momentum distributions of π^{\pm} and π^0 slightly different

However, the π^0 decays happen realistically

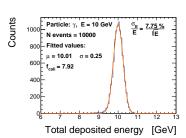
Geant4 hits to cell hits

Introduction

Simulations

reconstruction

identificatio


Resuit

Comparing LAr/LKr ECAL designs

Conclusion

- Calorimeter divided into 10 layers in the r-direction, 680 cells in ϕ -direction and 300 cells in z-direction
- Cell size: $\sim 2 \times 2 \times 4 \text{ cm}^3$
- All geant hits are assigned a cell
- Illuminate evenly over cell surface: position of entire event displaced randomly within the area of one cell

Sampling fraction: 12.6%

A liquid krypton/tungsten design

Introduction

Simulations

reconstruction

identificati

resui

LAr/LKr ECAL design

Camalanian

LKr and W have smaller Molière radii \rightarrow possible better separation of close-by photons.

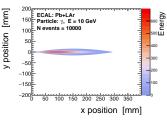
- LAr/Pb replaced by LKr/W
- 70 concentric cylinders
- \bullet Layer thickness reduced to 3.7 mm \rightarrow 140 mm narrower ECAL
- Depth: $21.3X_0$
- Calorimeter divided into 10 layers in the r-direction, 1360 cells in ϕ -direction and 600 cells in z-direction
- Cell size: $\sim 1 \times 1 \times 2.6 \text{ cm}^3$

Comparison using Geant4 hits

Introduction

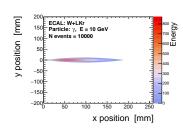
Simulations

reconstructio


identification

Result

Comparing LAr/LKr ECAL design


Conclusion

LAr design:

$R_M = 41 \text{ mm}$

LKr design:

$$R_M = 27 \text{ mm}$$

⇒ LKr design does give narrower showers

Simulations

Shower reconstruction

Particle identification

Results

Comparing LAr/LKr ECAL design

Conclusion

Shower reconstruction

Introduction

Simulations

Shower reconstruction

Particle identification

Result

Comparing LAr/LKr ECAL design

Conclusion

Simulations

reconstruction
Particle

Result

Shower

Comparing LAr/LKr ECAL design

Conclusio

- $oldsymbol{0}$ For each cell, point to highest energy (of 26) neighbours exceeding ${
 m thrs}_{low}$
 - If the cell is local maximum and exceeds ${
 m thrs}_{high}$ it will be a seed
 - For each cell, define list of followers (cells that point to it)

Simulations
Shower

reconstruction

Particle

Result

Comparing LAr/LKr ECAL design

Conclusion

- f 0 For each cell, point to highest energy (of 26) neighbours exceeding ${
 m thrs}_{low}$
 - If the cell is local maximum and exceeds ${
 m thrs}_{high}$ it will be a seed
 - For each cell, define list of followers (cells that point to it)
- 2 Start by seed cells (local energy maximum) and collect followers iteratively \rightarrow proto-clusters

Simulations
Shower

reconstruction

Results

Comparing LAr/LKr ECAL design

Conclusion

- f 0 For each cell, point to highest energy (of 26) neighbours exceeding ${
 m thrs}_{low}$
 - If the cell is local maximum and exceeds ${
 m thrs}_{high}$ it will be a seed
 - For each cell, define list of followers (cells that point to it)
- ② Start by seed cells (local energy maximum) and collect followers iteratively → proto-clusters
- 6 Merging of proto-clusters

Simulations

Shower reconstruction

identificatio

Compari

LAr/LKr ECAL design

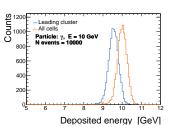
Conclusion

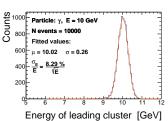
- $oldsymbol{1}$ For each cell, point to highest energy (of 26) neighbours exceeding ${
 m thrs}_{low}$
 - If the cell is local maximum and exceeds ${
 m thrs}_{high}$ it will be a seed
 - For each cell, define list of followers (cells that point to it)
- ② Start by seed cells (local energy maximum) and collect followers iteratively → proto-clusters
- 3 Merging of proto-clusters
- \Rightarrow A reconstruction threshold of $E_{clus} > 200$ MeV is used

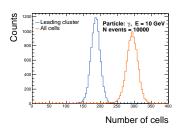
Clustering - 10 GeV photons

Introduction

Simulations


Shower reconstruction


Particle identification


Result

Comparing LAr/LKr ECAL design

Conclusion

- Leading cluster contains majority of particle energy
- Energy resolution slightly reduced
- ⇒ successful clustering

Clustering - 10 GeV photons

Introduction

Shower

Particle

Result

Comparing LAr/LKr ECAL design

Conclusion

Position resolution:

 The cluster positions are calculated as the energy weighted mean of the associated cell positions

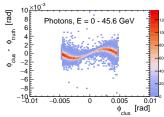


Figure: ϕ coordinate

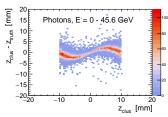


Figure: z coordinate

⇒ need an s-curve correction

S-curve correction - 10 GeV photons

Introductions Simulations

Shower reconstruction

identificatio

Comparing LAr/LKr

Conclusion

Correction is done by fitting a sine function to s-curves and using the fit result as the correction

Result:

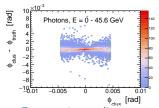
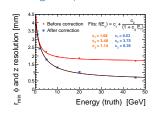



Figure: ϕ coordinate

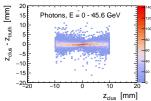


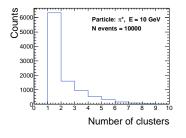
Figure: z coordinate

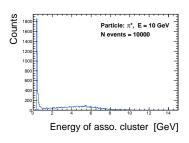
 $\Rightarrow r\phi/z$ resolution for 10 GeV photons at r=2160 mm: 1.95 mm (before) \to 1.28 mm (after)

Clustering - 10 GeV charged pions

Introduction

Simulations


Shower reconstruction


Particle identification

Result

Comparing LAr/LKr ECAL design

Conclusion

- On average 0.8 additional clusters per generated 10 GeV particle
- Associated cluster chosen based on proximity to charged track

⇒ need a fake photon killing to separate genuine/fake photons

Clustering - π^0 's

Introduction

Simulations

Shower reconstruction

identification

Result

Comparing LAr/LKr ECAL design

Conclusion

$$\alpha(\gamma,\gamma) \propto \frac{1}{E_{\pi}^0}$$

 \Rightarrow daughter photons from high energy π^0 are likely to merge into one cluster

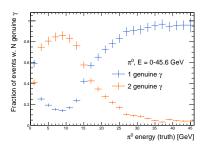
Clustering - π^0 's

Introduction

Shower

reconstruction

Particle


Resul

Comparing LAr/LKr ECAL design

Conclusion

$$\alpha(\gamma,\gamma) \propto \frac{1}{E_\pi^0}$$

 \Rightarrow daughter photons from high energy π^0 are likely to merge into one cluster

- Resolved π^0 's: The two photons are reconstructed as two separate clusters
- Unresolved π^0 's: The two photons merge into one cluster
- Residual single photons: One photon is under reconstruction threshold

Simulations

Shower

Particle identification

Results

Comparing LAr/LKr

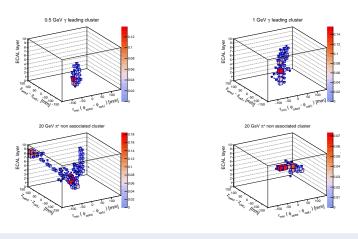
Conclusion

Particle identification

Fake photon killing

Introduction

Simulations


Shower reconstruction

Particle identification

Result

Comparing LAr/LKr ECAL design

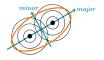
Conclusion

 \Rightarrow fakes per π^{\pm} reduced by a factor 26 to 0.035 fakes per π^{\pm}

Single photon/unresolved π^0 separation

Introduction

Simulations


Shower reconstructio

Particle identification

Results

Comparing LAr/LKr ECAL design

Conclusion

⇒ Major axis correlated with opening angle of photons

Single photon/unresolved π^0 separation

Cimplestion

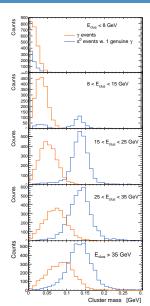
Particle identification

Result

Comparing LAr/LKr ECAL design

Conclusion

⇒ Major axis correlated with opening angle of photons


The major/minor axis lengths can be re-formulated to calculate a cluster mass:

$$m_{\rm clus} = c_1 E_{\rm clus} x$$
 (2)

with

$$x^2 = major^2 - minor^2 . (3)$$

Calibration factor: $c_1 \sim 1$.

Simulations

Shower

article

Results

Comparing LAr/LKr ECAL desig

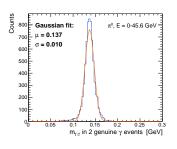
Conclusion

Results

Introduction

Simulations

Shower reconstruction


Particle

Results

Comparing LAr/LKr ECAL design

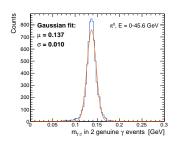
Conclusion

- **1** Combine all genuine photons to find resolved π^0 's
 - Photon pair accepted if $m_{\gamma,\gamma}$ is consistent with m_{π^0} within $4\sigma_{m_{\gamma,\gamma}}$
 - $\Rightarrow \epsilon_{E<16\text{GeV}} > 98\%$

Introduction

Simulations

reconstruction


Results

resur.

LAr/LKr ECAL design

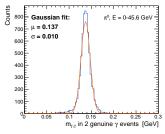
Conclusion

- **1** Combine all genuine photons to find resolved π^0 's
 - Photon pair accepted if $m_{\gamma,\gamma}$ is consistent with m_{π^0} within $4\sigma_{m_{\gamma,\gamma}}$
 - $\Rightarrow \epsilon_{E<16\text{GeV}} > 98\%$
- 2 Identify all unresolved π^0 's
 - Cluster accepted as unresolved π^0 if $m_{clus} > 0.1$ GeV
 - $\Rightarrow \epsilon_{E>16 {\rm GeV}} = 82-90\%$, with efficiency decreasing at higher energies

Introduction

Simulations

reconstruction


Results

Comparing

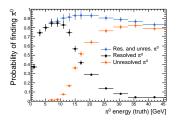
Conclusion

1 Combine all genuine photons to find resolved π^0 's

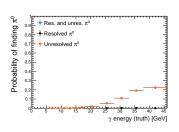
- Photon pair accepted if $m_{\gamma,\gamma}$ is consistent with m_{π^0} within $4\sigma_{m_{\gamma,\gamma}}$
- $\Rightarrow \epsilon_{E<16\text{GeV}} > 98\%$
- 2 Identify all unresolved π^0 's
 - Cluster accepted as unresolved π^0 if $m_A > 0.1$ GeV
 - $m_{clus}>0.1$ GeV $\Rightarrow \epsilon_{E>16{
 m GeV}}=82-90\%$, with efficiency decreasing at higher energies
- 3 Accept remaining genuine photons as residual single photons if $\alpha(\pi^\pm,\gamma) < 0.3$ rad

Introduction

Shower


Particle

Results


Comparing LAr/LKr ECAL design

Conclusion

Signal:

Background:

- \Rightarrow Probability of reconstructing π^0 : $\epsilon=84\%$ which is competitive with ALEPH results of $\epsilon_{ALPEH}\sim84\%$ (including residual single photons)
- \Rightarrow Probability of accepting a true γ as π^0 : $\epsilon_{bg}=4.5\%$ heavily dominated by photons with E>25 GeV

au decay mode identification

ntroduction

Shower

Particle

Results

Comparing LAr/LKr ECAL design

Conclusion

This thesis:

$Recon \to$					
Gen ↓	$\pi^{\pm} \nu$	$\pi^{\pm} \pi^0 \nu$	$\pi^{\pm} 2\pi^{0} \nu$	$\pi^{\pm} 3\pi^{0} \nu$	$\pi^{\pm} 4\pi^0 \nu$
$\pi^{\pm} \nu$	0.9560	0.0425	0.0010	0.0003	0.0002
$\pi^{\pm} \pi^0 \nu$	0.0374	0.9020	0.0586	0.0016	0.0002
$\pi^{\pm} 2\pi^0 \nu$	0.0090	0.1277	0.7802	0.0808	0.0022
$\pi^{\pm} 3\pi^{0} \nu$	0.0036	0.0372	0.2679	0.5972	0.0910
				+ .	

Table: Each row shows the fraction of e.g. $au o \pi^\pm
u$ decays classified as each of the considered channels

- ⇒ Most event classified correctly for all channels
- \Rightarrow Efficiency especially high for important $\pi^{\pm}\nu$ and $\pi^{\pm}\pi^{0}\nu$ channels
- \Rightarrow Efficiency decreases with rising number of π^0 's
- \Rightarrow Contributions to migration: Merging of π^{\pm} and π^{0} clusters, radiation photons

au decay mode identification

Introduction

Shower

reconstruction

Particle

Results

Comparing LAr/LKr ECAL design

Conclusion

This thesis:

$Recon \to$					
Gen ↓	$\pi^{\pm} \nu$	$\pi^{\pm}\pi^0\nu$	$\pi^{\pm} 2\pi^{0} \nu$	$\pi^{\pm} 3\pi^{0} \nu$	$\pi^{\pm} 4\pi^0 \nu$
$\pi^{\pm} \nu$	0.9560	0.0425	0.0010	0.0003	0.0002
$\pi^{\pm} \pi^0 \nu$	0.0374	0.9020	0.0586	0.0016	0.0002
$\pi^{\pm} 2\pi^0 \nu$	0.0090	0.1277	0.7802	0.0808	0.0022
$\pi^{\pm} 3\pi^{0} \nu$	0.0036	0.0372	0.2679	0.5972	0.0910

Table: Each row shows the fraction of e.g. $\tau \to \pi^{\pm} \nu$ decays classified as each of the considered channels

ALEPH results (normalized to 1. by author):

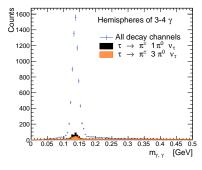
$Recon \to$					
Gen ↓	$h \nu$	$h \pi^0 \nu$	$h2\pi^0 \nu$	$h3\pi^0 u$	$h4\pi^0 \nu$
$h \nu$	0.9270	0.0670	0.0047	0.0010	0.0003
$h \pi^0 \nu$	0.0457	0.8756	0.0728	0.0053	0.0006
$h 2\pi^0 \nu$	0.0044	0.1470	0.7499	0.0900	0.0087
$h 3\pi^0 \nu$	0.0008	0.0288	0.3098	0.5768	0.0837

Remember: not apples-to-apples comparison!!

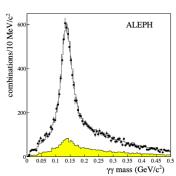
$\boldsymbol{\tau}$ decay mode identification

Introduction

Simulations


reconstruction

Results


Comparing LAr/LKr ECAL design

20712 0001

This thesis:

ALEPH results:

Figures show the invariant mass of two photons in three-four photon events, where one π^0 has already been identified.

Remember: not apples-to-apples comparison!!

Introduction

Simulations

Shower reconstruction

Particle identification

Result

Comparing LAr/LKr ECAL designs

Conclusion

Comparing the LAr/Pb and LKr/W ECAL designs

Comparing LAr/LKr ECAL designs

Introduction

Simulations

Shower reconstruction

Particle identification

Result

Comparing LAr/LKr ECAL designs

LCAL desig

- Less comprehensive analysis \rightarrow goal is π^0 reconstruction results
- In order to isolate effect of smaller cells, a revised LAr/Pb design with cell size $1\times1\times4~\mathrm{cm^3}$ is also investigated
- Clustering thresholds and reconstruction limits are kept fixed

Comparing LAr/LKr ECAL designs

IIILFOGUCLIOF

Shower

Particle

Doculto

Comparing LAr/LKr ECAL designs

Conclusion

- Less comprehensive analysis \rightarrow goal is π^0 reconstruction results
- In order to isolate effect of smaller cells, a revised LAr/Pb design with cell size $1\times1\times4~\mathrm{cm^3}$ is also investigated
- Clustering thresholds and reconstruction limits are kept fixed

Challenge: Truth information of photons in SPG π^0 events is not available \to some fake photons will be considered in this sub-analysis, but luckily the their influence on the results is negligible

Spatial resolution

Introduction

Simulations

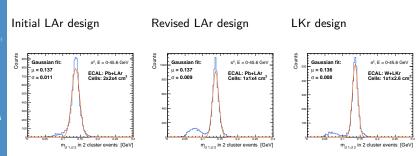
Shower

Particle identification

Results

Comparing LAr/LKr ECAL design

Conclusion


	Initial LAr design	Revised LAr design	LKr design		
$r\phi/\theta$ res.	1.28 mm	0.98 mm	0.76 mm		
Table: Measured for 10 GeV photons					

⇒ Narrower showers in LKr design improves spatial significantly

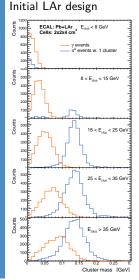
Resolved π^0 results

Comparing LAr/LKr ECAL designs

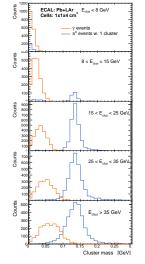
- Bumps since clustering is not optimized here. They do however not result in identification of fake π^0 's
- The mass resolution is improved for both the revised LAr design and the LKr design

Unresolved π^0 results

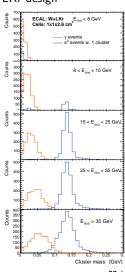
Introduction


Shower reconstruction

Particle identificatior


Result

Comparing LAr/LKr ECAL designs


Conclusion

Revised LAr design

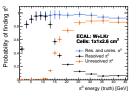
LKr design

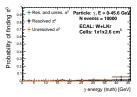
Overall π^0 reconstruction

Introduction

Shower

Particle


Result


Comparing LAr/LKr ECAL designs

Conclusion

Example: LKr design

Signal: Background:

ECAL	Efficiency		
	Signal	Background	
Initial LAr ECAL	89.23%	5.62%	
Revised LAr ECAL	91.09%	2.48%	
LKr ECAL	91.17%	1.09%	

- \Rightarrow Reducing cell size in LAr enhances spatial resolution and improves π^0 reconstruction
- \Rightarrow The LKr design seems well-suited for suppressing fake π^0 's

Introduction

Simulations

reconstruction

Particle

Results

Comparing LAr/LKr ECAL designs

Conclusion

Conclusion

Introduction

Particle

dentificatio

Resuit

LAr/LKr ECAL design

Conclusion

ullet Central detector demands for future ECAL wrt. au polarisation measurements: fine granularity, high energy resolution and low noise levels

Simulations

Shower reconstructio

Particle identification

Result

LAr/LKr ECAL design

Conclusion

ullet Central detector demands for future ECAL wrt. au polarisation measurements: fine granularity, high energy resolution and low noise levels

The LAr/Pb ECAL:

• Resolutions: $\frac{\sigma_E}{E} = \frac{8.3\%}{\sqrt{E}}$, $r\phi/\theta$: 1.28 mm

Simulations

Particle identification

Resul

Comparing LAr/LKr ECAL design

Conclusion

ullet Central detector demands for future ECAL wrt. au polarisation measurements: fine granularity, high energy resolution and low noise levels

- Resolutions: $\frac{\sigma_E}{E}=\frac{8.3\%}{\sqrt{E}}$, $r\phi/\theta:1.28$ mm
- Clustering: Using low (but realistic) thresholds plus reconstruction limit properly reconstructs the particles

Simulations

Particle identification

Resul

Comparing LAr/LKr ECAL design

Conclusion

ullet Central detector demands for future ECAL wrt. au polarisation measurements: fine granularity, high energy resolution and low noise levels

- Resolutions: $\frac{\sigma_E}{E}=\frac{8.3\%}{\sqrt{E}}$, $r\phi/\theta:1.28$ mm
- Clustering: Using low (but realistic) thresholds plus reconstruction limit properly reconstructs the particles
- The fake photon killing successfully suppresses fake photons by approximately a factor 26

Simulations

Particle identification

Resul

Comparing LAr/LKr ECAL design

Conclusion

ullet Central detector demands for future ECAL wrt. au polarisation measurements: fine granularity, high energy resolution and low noise levels

- Resolutions: $\frac{\sigma_E}{E}=\frac{8.3\%}{\sqrt{E}}$, $r\phi/\theta:1.28$ mm
- Clustering: Using low (but realistic) thresholds plus reconstruction limit properly reconstructs the particles
- The fake photon killing successfully suppresses fake photons by approximately a factor 26
- π^0 reconstruction eff. is $\epsilon=84\%$ and is competitive with ALEPH results. For background: $\epsilon_{bg}=4.5\%$

Shower

Particle identificatio

Resul

Comparing LAr/LKr ECAL design

Conclusion

ullet Central detector demands for future ECAL wrt. au polarisation measurements: fine granularity, high energy resolution and low noise levels

- Resolutions: $\frac{\sigma_E}{E}=\frac{8.3\%}{\sqrt{E}}$, $r\phi/\theta:1.28$ mm
- Clustering: Using low (but realistic) thresholds plus reconstruction limit properly reconstructs the particles
- The fake photon killing successfully suppresses fake photons by approximately a factor 26
- π^0 reconstruction eff. is $\epsilon=84\%$ and is competitive with ALEPH results. For background: $\epsilon_{bg}=4.5\%$
- au decay mode identification is generally successful with an efficiency of 96% and 90% for the $\pi^{\pm}\nu$ and $\pi^{\pm}\pi^{0}\nu$ channels, respectively.

Simulations Shower

identificatio

Resu

Comparing LAr/LKr ECAL design

Conclusion

ullet Central detector demands for future ECAL wrt. au polarisation measurements: fine granularity, high energy resolution and low noise levels

- Resolutions: $\frac{\sigma_E}{E} = \frac{8.3\%}{\sqrt{E}}$, $r\phi/\theta$: 1.28 mm
- Clustering: Using low (but realistic) thresholds plus reconstruction limit properly reconstructs the particles
- The fake photon killing successfully suppresses fake photons by approximately a factor 26
- π^0 reconstruction eff. is $\epsilon=84\%$ and is competitive with ALEPH results. For background: $\epsilon_{bg}=4.5\%$
- au decay mode identification is generally successful with an efficiency of 96% and 90% for the $\pi^{\pm}\nu$ and $\pi^{\pm}\pi^{0}\nu$ channels, respectively.
- The LKr/W ECAL design provides narrower showers which enhances the spatial resolution and precision in π^0 reconstruction \Rightarrow future studies

Introduction

Simulations

reconstruction

identinea

Results

Comparing LAr/LKr ECAL design:

Conclusion

Thank you for listening!

Introduction

Simulations

reconstruction

Particle

Results

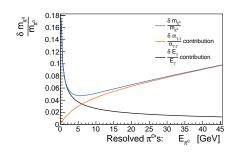
Comparing LAr/LKr ECAL design

Conclusion

Back-up

π^0 invariant mass resolution

Introduction


Simulations

reconstructio

. . .

LAr/LKr ECAL designs

Conclusion

Using the assumption that $E_{\gamma,1}=E_{\gamma,2}.$ Total mass resolution given by:

$$\frac{\delta m}{m} = \sqrt{\left(\frac{\delta E}{E}\right)^2 + \left(\frac{\delta \alpha_{\gamma,\gamma}}{\alpha_{\gamma,\gamma}}\right)^2} \tag{4}$$

⇒ Energy contribution dominant at low energies

Longitudinal profile

Introduction

Shower reconstruction

Particle identification

Result

Comparing LAr/LKr ECAL design

Conclusion

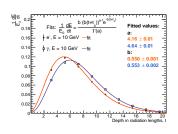
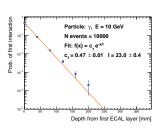



Figure: The constant $t_0=0.7X_0$ accounts for the depth of the cryostat and LAr pre-sampler

 \Rightarrow Measured and expected profile are consistent

⇒ Electrons interact earlier (on average) than photons

Probability of no interaction:

$$P(x) = Ce^{-x/\ell} \tag{5}$$

Expected value: $\ell=24.99~\mathrm{mm}$

⇒ Expected and calculated MFP are not consistent but close

au polarisation measurements

Introduction

The polarisation

$$P_{\tau}(\cos \theta) = -\frac{\mathcal{A}_{\tau} (1 + \cos^2 \theta) + 2\cos \theta \mathcal{A}_e}{(1 + \cos^2 \theta) + 2\mathcal{A}_{\tau} \mathcal{A}_e \cos \theta}$$
 (6)

reconstruction

identificati

Resul

Comparing LAr/LKr ECAL design

Conclusion

with the fermion asymmetry parameter

$$A_{\rm f} = \frac{\left(c_L^{\rm f}\right)^2 - \left(c_R^{\rm f}\right)^2}{\left(c_L^{\rm f}\right)^2 + \left(c_R^{\rm f}\right)^2} \qquad (7)$$

$$2c_V^{\rm f} c_A^{\rm f} \qquad (6)$$

$$\equiv \frac{2c_V^{\rm f} c_A^{\rm f}}{\left(c_V^{\rm f}\right)^2 + \left(c_A^{\rm f}\right)^2} \qquad (8)$$

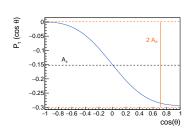


Figure:

$$P_{\tau}({\rm cos}\theta)$$
 for ${\cal A}_{\rm e}={\cal A}_{\tau}=0.15$