Mixed Messages

Constraining dark matter with astrophysical signals (or lack thereof)

Based on the works:

- M. Mosbech, A. Jenkins, S. Bose, C. Boehm, M. Sakellariadou, \& Y. Wong, in prep. 2022
- M. Mosbech, C. Boehm, \& Y. Wong, in prep. 2022
- M. Mosbech \& Z. Picker, arXiv:2203.05743, under review

Let's introduce a scattering model

Simple scattering with neutrinos
Ignore implications for creation/annihilation
Assume constant cross-section

Arguments in favor: Neutrinos are weird
 Cannot test in detector

Linear and nonlinear evolution

Comparison to WDM: similar

 at 'small' k, then oscillations

Linear and nonlinear evolution

Comparison to WDM: similar at 'small' k, then oscillations

Suppression gets smaller, oscillations disappear
What does it look like?

It looks like warm dark matter!

"Late" time predictions

Looks like the oscillations are gone! Interacting and warm look almost the same.

Close enough that it could just be a different WDM mass

This suppression can be probed with SKA.

Looks like the oscillations are gone! Interacting and warm look almost the same.
Close enough that it could just be a different WDM mass
This suppression can be probed with SKA.

High z data needed to distinguish

Encore: Primordial Black Holes

Small PBHs lose mass,

 constrained by r-raysExtended distributions change shape \rightarrow signal today is different Must be included in local bounds

$$
\phi(M, t)=\phi\left(M_{0}(M, t), t_{0}\right) \frac{\mathrm{d} M_{0}(M, t)}{\mathrm{d} M}
$$

Encore: Primordial Black Holes

Small PBHs lose mass,

 constrained by r-raysExtended distributions change shape \rightarrow signal today is different Must be included in local bounds

$$
\phi(M, t)=\phi\left(M_{0}(M, t), t_{0}\right) \frac{\mathrm{d} M_{0}(M, t)}{\mathrm{d} M}
$$

Encore: Primordial Black Holes

Small PBHs lose mass,

 constrained by r-raysExtended distributions change shape \rightarrow signal today is different Must be included in local bounds

$$
\phi(M, t)=\phi\left(M_{0}(M, t), t_{0}\right) \frac{\mathrm{d} M_{0}(M, t)}{\mathrm{d} M}
$$

Summary

SKA can improve constraints on DMneutrino interactions by two orders of magnitude
High-z data necessary to distinguish IDM and WDM

Alternative DM candidate PBH: lifetime evolution must be accounted for in extended distributions

