Accelerator Research and Innovation for European Science and Society

Experience from the European Instrumentation Network ARIES-ADA Network ADA: <u>Advanced Diagnostics at Accelerators</u>

Work-package & task leader: Peter Forck GSI Task leaders: Ubaldo Iriso ALBA, Rhodri Jones CERN, Kay Wittenburg DESY

Outline of the talk:

- Introduction to ARIES and ARIES-ADA
- Summary of three exemplarily workshops:
 - organization
 - exemplarily content: highlights chosen by my personal perspective
- General considerations related to workshops: my personal perspective

ARIES integrating Activity, ADA Network

Accelerator Research and Innovation for European Science and Society

- > 18 work-packages funded by European Union from 2017 to 2021
- > 41 participating institutions from 18 countries coordinated by M. Vretenar CERN
- Follow-up by

Innovation Fostering in Accelerator Science and Technology

ARIES consisted of:

- Five Joint Research Activities for development of key technologies
- > Five Transnational Access to provides infrastructure

IFAST

Seven Network Activities aiming for collaborations and common efforts

ADA = Advanced **D**iagnostics for Accelerators is (was) one Network Activity

It consists of 5 tasks:

- **Task 1:** Coordination (as for every WP) \rightarrow Peter Forck GSI
- **Task 2:** Diagnostics at hadron LINACs \rightarrow Peter Forck GSI
- **Task 3:** Diagnostics at hadron synchrotrons \rightarrow Rhodri Jones CERN
- Task 4: Diagnostics at circular light sources \rightarrow Ubaldo Iriso ALBA-CELLS
- **Task 5:** Diagnostics at linear light sources \rightarrow Kay Wittenburg DESY

During execution, it turned out that this is not a practical classification!

ARIES-ADA Network

ADA = Advanced Diagnostics for Accelerators is (was) one Network Activity

- Goal: Initialize and strengthen knowledge transfer & collaboration between experts on various fields
- > Methodology: Topic workshops on one dedicated subject & exchange of personnel
- ➤ Task structure (at proposal time): Hadron LINAC (GSI), Hadron synch. (CERN) circular light source (ALBA), linear light source (DESY) → changed due to practicalities
- Budget: 160 k€ plus administrative overhead shared by ALBA, CERN, DESY & GSI
- Covid-19: Interruption of program execution

Requirements for beam diagnostics at novel accelerators:

- Design of adequate diagnostics for existing & novel accelerators
- Instruments are based on different physics and techniques

Workshop goal based on:

- Physicists, engineers, technicians from acc. labs, universities & industry
- Expertise from experts on other fields
- Documentation of state-of-the-art knowledge

ARIES-ADA Workshops

#	Date	Org. & location	Title of workshop	# Part.	Task
1	22-24 May	GSI	Simulation, Design & Operation of Ionization Profile	33	2&3
	2017	Darmstadt	Monitors		
2	29-30 Jan.	ALBA & DESY	Emittance Measurements for Light Sources and FELs	37	4&5
	2018	Barcelona			
3	14-16 May	CERN & GSI	Extracting information from electro-magnetic monitors in	32	3&4
	2018	Geneva	Hadron Accelerators		
4	25-27 June	DESY & PSI	Longitudinal Diagnostics at FELs	45	5
	2018	Hamburg	(co-sponsoring)		
5	12-14 Nov.	ALBA & GSI	Next Generation Beam Position Acquisition and Feedback	84	3&4
&	2018	Barcelona	<u>Systems</u>		
6			Two in one event: hadron & electron acc.		
7	1-3 April	GSI & SOLARIS	Scintillation Screens and Optical Technology for	49	2, 4
	2019	Krakow	transverse Profile Measurements		& 5
8	3-5 June	ALBA & ESRF	Diagnostics Experts of European Light Sources (DEELS 19)	33	4
	2019	Grenoble	(co-sponsoring)		
9	25-29 Jan.	CIEMAT & GSI	Experiences during Hadron LINAC Commissioning	239	2
	2021	Online			
10	21-23 June	CERN & GSI	Materials and Engineering for Particle Accelerator Beam	205	2, 3,
	2021	Online	Diagnostic Instruments		4&5
11	7-8 July	ALBA & SESAME	Diagnostics Experts of European Light Sources (DEELS 21)	49	4
	-	-			

red: organized only due to ARIES-ADA

Documentation at <u>https://aries.web.cern.ch/wp8</u> **ES** P. Forck GSI, Experiences from ARIES-ADA Workshops, French RIF meeting 18 Nov. 2021

Scintillation Screens and Optical Technology for transverse Profile Measurements

Workshop on 1st to 3rd of April 2019 in Krakow

see indico.cern.ch/event/765975/

49 participants (more applications but restriction de to venue)

incl. material research, laser acceleration, industry

- Physics and production techniques of scintillators
- Optics and cameras
- Experiences at hadron accelerators
 mainly radiation hardness
- Experiences at electron accelerator Ta
 - \rightarrow mainly resolution limits
- > 29 talks incl. 3 talks by industry

Screens: Simple set-up, but non-trivial physics

Industrial exhibition

Summary by B. Walasek-Höhne (GSI) as invited talk IBIC conference in September 2019

Workshop Scintillation Screens: Profile Measurement versus Detector Appl.

Difference to traditional applications in high energy physics, medical imaging & security:

Parameter	Physics, Medical	Hadron acc.	Electron acc.	
Application	Secondary part.	Primary beam transverse profile		
Particle rate	Low	High	Very high	
Energy	Up to 10 GeV	10 keV100 GeV	100 keV10 GeV	
Spot size	10100 mm	150 mm	0.011 mm	
Spatial resolution	1 mm	100 µm	10 µm	
Deposited dose	Low	Very high	Medium	
Saturation	None	Expected	Possible	
Radiation damage	Low	Very high	High	

Corutesy B. Walasek-Höhne GSI, G. Kube DESY

Accelerators:

- Some time same material used e.g. YAG:Ce for electron beams
- Sometimes different requirements e.g. ceramic Al 203:Cr (Chromox ')
- Quite different demands....

Workshop Scintillation Screens: Topic 1 - Physics of Scintillation

Talks on scintillation process by experts

- Liberation of fast electrons by beam particle
- > Thermalization within conducting band within \approx ps
- > Trapping at imperfection or dopants \approx ns
- \succ Light emission \approx 100 ns
- \Rightarrow Material dependent
- \Rightarrow Controllable by matrix and dopant
- Accelerators: Large energy loss in small volume
- \rightarrow Informal collaboration established

Talks inorganic scintillator production by industry

- Extensive production method
- Detailed quality assurance required

Accelerators:

- Demands for high energy deposition
- Mechanical stability
- Vacuum capability
- \Rightarrow Intensive discussion on material choice

Courtesy W. Wolszczak TU-Delft & E. Auffray CERN

Courtesy J. Parizek CRYTUR

Workshop Scintillation Screens: Topic 2 – Optics & Cameras

Optics: Old principles & recent realization

- Scheimpflug criterion & tele-centric lens
 no image deformation
- Appropriate camera sensor technology
- Camera digital interface
- Camera cauterization by fixed norm

Accelerators:

 \Rightarrow Improved installation at some facilities

Radiation hardness tests

- Radiation hardness
 - e.g. at CERN CHARM with 24 GeV protons Result: Digital interface failure of few shots Image sensor still acceptable after 500 Gy
- Fibre bundle versus telescope

Accelerators:

 \Rightarrow Requirement for radiation-hard digital cameras!

Courtesy S. Gibson RHUL, M. Veronese ELETTRA

Courtesy S. Burger CENN

Workshop Scintillation Screens: Topic 4 – Applications for Electrons

Requirements:

Courtesy: Ch. Wiebers DESY, M. Verones ELETTRA

▶ Regular OTR: $N_{photon} \propto N_{beam}$ (forward) ⇒ size

➤ Coherent OTR: N_{photon} \propto (N_{beam})² \Rightarrow not size as wavelength \approx bunch size (long.& trans.)

Yuji Otake, SACLA

R. Ischebeck et al., Phys. Rev. ST Accel. Beams 18, 082802

Workshop Scintillation Screens: Topic 4 – Applications for Electrons

Observation:

"Smoke-ring" shaped profiles @ XFEL for LYSO:Ce scintillator

Possible explanation:

- Ionization channel related to secondary electron range
- Saturation close to electron track
- \Rightarrow Important for high flux beam (high current, short bunch & transversally focused)
- Same effect for heavy ions due to large dose (?)

Electron passage through scintillator:

Iow charge density beam

G. Kube DESY et al., IBIC 2017)

high charge density beam

Workshop Scintillation Screens: Topic 3 – Applications for Hadrons

Test of different scintillators at high energies

Tpy. scintillators \leftrightarrow Phosphor powder \leftrightarrow ceramics **Example:** Irradiation with ions at GSI

Light yield:

Very different brightness (here factor 1000) Still linear with beam current even for large doses

> Profile:

Most materials show correct results

Deviation understood and possible cures discussed

Accelerators: \Rightarrow Material choice matched to beam

Beam: Ni @ E_{kin} = 300 MeV/u (GSI synchrotron) fast (1µs) & slow (0.3s) extraction

Workshop Scintillation Screens: Topic 3 – Applications for Hadrons

Test of different scintillators at <u>low</u> energies Example: Ceramic irradiation at TANDEM at HZDR

- Light yield:
 Very different for brightness (here factor 500)
- > Profile:

Possible deformation due to thermal quenching

Radiation damage:

Depends strongly on material

Deviation investigated e.g. by thermal spike model Semi-empirical Birks-model discussed with experts Possible cures e.g. in-situ annealing by heating Accelerators: ⇒ Material choice matched to beam

Radiation hardness comparison

Example Al₂O₃: Irradiation by 0.5 MeV/u & 300 MeV/u

- Damage by irritation depends strongly on ion type and energy
- Model (e.g. 'Birks model') discussed with experts Accelerators:

 \Rightarrow Important finding for target diagnostics at SNS or ESS

Beam: Cu E_{kin} = 0.5MeV/u, dc beam Range R = 5µm

Remote Workshop on 'Experiences during Hadron LINAC Commissioning'

Workshop from 25th to 29th of January 2021 organized by CIEMAT (Madrid) and GSI

Planned for June 2020 as in-person event; however, postponed as remote with the aims:

- > Common efforts by experts on instrumentation, beam dynamics and operation
- Review experiences from commissioning to early operation
- Review initially formulated requirements and final usage of instrumentation
- Explore the balance between detailed measurements on a test bench and fast commissioning

Many proton and ion LINACs are presently realized worldwide

P. Forck GS<mark>I, Experiences from ARIES-ADA Workshops, French RIF meeting 18 Nov. 2021</mark>

Remote Workshop on 'Experiences during Hadron LINAC Commissioning'

Workshop from 25th to 29th of January 2021 organized by CIEMAT (Madrid) and GSI

Planned for June 2020 as in-person event; however, postponed as remote with the aims:

- Common efforts by experts on instrumentation, beam dynamics and operation
- Review experiences from commissioning to early operation \geq
- Review initially formulated requirements and final usage of instrumentation \geq
- Explore the balance between detailed measurements on a test bench and fast commissioning

Many proton and ion LINACs are presently realized worldwide

Practical details and statistics:

Registrations: total 239 \geq

> Europa: 154 = 70 % | Asia: 47 = 21 % | America: 19 = 9% Industry: 36 participants = 15 %

Meeting time: Monday to Friday from 14:00 to 17:15 CET 2 x 3 talks + discussion per day

Talks: \succ

Europa: 18 = 60 % | Asia: 5 = 17 % | America: 7 = 23%

- About 100 people connected in parallel, many contribution to discussion (even on Friday 90 attendees)
- No pre-recorded talks to keep life atmosphere \geq

. Forck GSI, Experiences from ARIES-ADA Workshops, French RIF meeting 18 Nov. 2021.

18

239 online registrations

15

Day time

14

0 13

Mondav

16

17

D-Plate & stepwise Commissioning ↔ final Instrumentation

Observation: Some facilities do detailed stepwise commissioning, e.g. Sprial2, other installed large parts of the DTL in one step.

- > Stepwise commissioning in particular of versatile ion LINACs; RFQ parameter are crucial
- > Measured during stepwise commissioning: transverse emittance, bunch shape and long. emi.
- > Wish list from beam dynamics & operation: Test simulation, but often insufficient operation time
- > However, installation time is very restricted and does not allow for detailed meas.

D-Plate at Spiral2 from Christophe Jamet

D-Plate & stepwise Commissioning ↔ final Instrumentation

Observation: Some facilities do detailed stepwise commissioning,

other installed large parts of the DTL in one step, e.g. FRIB.

- Only few steps at FRIB: Source & LEBT; RFQ, DLT up to 20 MeV/u, 200 MeV/u
- \triangleright Only few intermediate measurements \Rightarrow 'empirical settings' aided by automatisms
- Acceleration achieved by automated phase scan
- > Ongoing commissioning

D-Plate & stepwise Commissioning ↔ final Instrumentation

Observation: stepwise com. \leftrightarrow fast installation,

Experiences at SNS

- Design values is reached only after many years and 'small step optimization'
- > All beam diagnostics were important for improvements
- > No clear relation RMS parameters \leftrightarrow beam loss

DTL in-line diagnostics at SNS from Alexander Aleksandrov

Instrument	Measured parameter	quantity	Use for commissioning	Use for machine tuning	Use in operation	Use in Beam study
Beam Loss Monitor (BLM)	radiation Ionizing, n	11+12	Yes	Yes	Yes	Yes
Beam Current Monitor (BCM)	beam current	6	Yes	No	No	No
Beam Position Monitor (BPM)	x, y, z position	10	Yes	Yes	No	Yes
Wire scanner (WS)	x, y 1-d profile	6	Yes	No	No	Yes
Differential BCM (DBCM)	In-out beam current	1	No	No	No	No
Faraday Cup with energy degrader (FC)	beam current above energy cutoff	6	Yes	Yes	No	Yes
Laser Emittance Scanner (LES) at SCL only	x,y 2-d emittance; longi. 1-d profile	1	No* added later	No	No	Yes 18

Longitudinal Emittance Measurement

Observation: At many facilities, the mean energy is measured precisely via ToF by BPMs.

The energy distribution and bunch shape (i.e. long. phase space) is measured rarely.

Mean energy after cavity \rightarrow important at all facilities:

Time-of-flight along the pulse using BPMs

Longitudinal bunch shape measurement

- Bunch Shape Monitor (scanner) is important for beam studies $\frac{1}{2}$
- Phase space reconstruction using various methods CERN LINAC4 from Jean-Baptiste Lallement and Jocelyn Tan

J-PARC bunch shape from Akihiko Miura Adjustment of the RF-feed forward power

Failure of the RF-feed forward power (example: failure at DTL1, 2 and 3)

Machine Learning and Reconstruction Algorithms

Observation: Machine Learning and reconstruction algorithms are increasingly important

Machine Learning:

- Machine learning as an operational tool with adaption of existing methods
- Successfully demonstrated, trending technology

Reconstruction algorithm:

 Measurement for quadrupole or buncher variation reconstruction algorithms for non-Gaussian beams
 GSI bunch shape measurement and entrance reconstruction

CERN LINAC4 trajectory optimization from Verena Kain

Conclusion:

- Collection of experiences from almost all hadron LINAC facilities
- Report and documentation of hands-on experiences
- Summary report available

P. Forck GSI, Experiences from ARIES-ADA Workshops, French RIF meeting 18 Nov. 2021

 \rightarrow conclusion

Workshop on Materials and Engineering Technologies

Title: 'Materials and Engineering Technologies for Particle Accelerator Beam Instruments'

Originally planned in Oxford for March 2020, 3 days with 50 attendees and 32 talks **Execution of remote workshop**:

- Date: June 21st to 23rd, 2021
- 205 registered participants
 15 Americans, 20 Asian, 170 Europeans
- $\succ \approx 100$ simultaneous attendees
- > 3 half days at afternoon in Europe
- In total 22 talks, 25 min each
- No pre-recordings to keep lively atmosphere
- Break-out rooms for discussion
- Documentation at

https://indico.cern.ch/event/1031708/

Workshop on Materials and Engineering Technologies

Title: 'Materials and Engineering Technologies for Particle Accelerator Beam Instruments' \rightarrow Novel applications for accelerator beam instrumentation

The aims of the Workshop are to review:

- Novel materials and application
- Innovative production methods
- Improved vacuum components
- Information concerning experiences
- Intensify collaborations institutes and industry

Participation of **engineers** (normally not attending conferences) and companies

Summary talk by P. Forck at IBIC September 2021

Carbon Nanotubes for fast rotating Wire Scanner

Talk by William Andreazza and Alexandre Mariet on behalf of CERN

N	lec	hani	ical	pro	pert	ies	of	car	bon	ma	teri	al	S

Material	ρ [g.cm ⁻³] Density	σ _{max} [GPa] Tensile strength	E [GPa] Young modulus		
CNT (SWNT) ¹	0,02 - 4	up to 150	up to 1e3		
Carbon fiber ²	1,7 - 2,5	0.6 - 4.5	60 - 500		
CNT wire ³	1.1 - 2.1	0.2 - 3.3	20 - 100		

'Ashby Diagram': Quantitative Selection Method for Wire Scanner

Talk by John Huber behalf of Engineering Dep. University Oxford and CERN

Requirements: High speed 20 m/s & acc. 15000 rad/s²⁰

- \Rightarrow mechanical stiffness
- \Rightarrow light (low-Z) material
- \Rightarrow high temperature tolerance

Quantitative selection method: Ashby diagram Result:

- Clear selection criteria
- CNT robes have superior performance
- Test of open topics performed
 e.g. stat. variation of breaking strength

Mechanical properties of carbon materials

	Material	ρ [g.cm ⁻³] Density	σ _{max} [GPa] Tensile strength	E [GPa] Young modulus		
	CNT (SWNT) ¹	0,02 - 4	up to 150	up to 1e3		
	Carbon fiber ²	1,7 - 2,5	0.6 - 4.5	60 - 500		
2	CNT wire ³	1.1 - 2.1	0.2 - 3.3	20 - 100		

Carbon Nanotubes for Stray Light suppression by black Coating

Talk by Ben Jensen on behalf of company NanoSystem in collaboration with CERN

Requirement: In-vacuum suppression of stray light for optical monitors

Method: Spray coating of carbon nanotubes Post processing by backing Product: 'Vantablack', several types available Results:

- Broadband (UV to NIR) reflection below 0.5 %
- Acceptable mechanical properties
- Low vacuum outgassing
- Radiation hard

Tests at CERN performed

Company background in space technology

Production examples

 Waser beam power dump

Scintillator made of Boron Nitride Nanotubes

Talk by Kavin Jordan on behalf of Jlab, collaboration with BNL, GSI & Rice University

Method: Disk made of Ø 2- 6 nm Boron Nitride nanotubes BNNT Example: Test at BNL LEReC Advantage of BNNT:

- > Low density \Rightarrow robustness for high power beam
- Good mechanical stability, large size possible
- No blooming due to separated tubes
- > Fast decay time \approx 10 ns

Tests: Electron beam at Jlab & BNL, 1.6 MeV < E_{kin} < 7.4 GeV

Ion beam at GSI, E_{kin} = 4.8 MeV/u

Results:

- > Light yield $\approx \frac{1}{4}$ compared to Chromox
- Radiation damage tested
 (e.g. 8 % decrease for 80 mC electrons)
- Surface modification investigated

 \rightarrow conclusion

Adaptive Manufacturing: Example of fast Wire Scanner

Talk by Ana Miarnau on behalf of CERN

Adaptive Manufacturing: Manufacturing parts by adding layer upon layer of material Examples of methods for metals: DED & EBM Design of wire scanner fork:

- High stiffness in two planes and
- Low inertia
- Titanium alloy Ti-6Al-4V chosen Series of 56 forks produced in 3 batches

Metal fork

Results:

- Fully functional
- Vacuum outgassing comparable to traditional production

Example: Fork for wire scanner at CERN

Powder fed: Direct Energy Deposition extended Texeser Faces kns Fac

Powder bed: Electron Beam Melting

Magnetically coupled Vacuum Drives

Talk by Nick Clark on behalf of company UHV-Design, collaboration with CERN, PSI

P. Forck GSI, Experiences from ARIES-ADA Workshops, French RIF meeting 18 Nov. 2021

 \rightarrow conclusion

Novel Metal Sealing for large Flanges

Talk by Martin Lemke on behalf of DESY

Challenge: No CF-fange-type gaskets possible for large rectangular flanges **Novel sealing technique:** Many small grooves to press gasket Advantage: Lower precision needed as for flat surface sealing **Result**: Example: XFEL BPM camber

- Production method established
- UHV performance approved
- At least 20 time reusability \geq

 \rightarrow conclusion

Suitable for all flange shapes \geq

Commercial

'AMF-Writer'

MILE - MAR ROAD

Production on CNC using 'AMF Writer tool '

In-person versus remote Workshop

Pros of virtual meeting:

- Permanently \approx 100 participants as no travel required Face-to-face meeting typically \approx 50 attendees
- More attendees from oversee
- Good mixture between experts on various subjects \geq
- \geq Contributions to discussion by break-out rooms
- 45 min final discussion with sufficient contributions
- Maybe: people are keen for workshops related to many cancellations in 2020 & 2021
- Afternoon acceptable in all continents \geq

Cons of virtual meeting:

- Much less direct interaction as face-to-face meeting
- No initialization of collaborations
- Not much fun as a group event \geq

Personal contact cannot be initialized

 \Leftrightarrow we can 'digest' virtual meeting for a period, but personal contact is mutual in science

. Forck GS<mark>I, Experiences from ARIES-ADA Workshops, French RIF meeting 18 Nov. 2021</mark>

Other Type of special Workshops

Other special German regular event (not related to ARIES):

Frame: 'Project oriented Funding' by Helmholtz Association (BESSY, DESY, GSI, HZDR, KIT)

One dedicated sub-task in accelerator science on 'Beam control, diagnostics & dynamics'

- Annual meeting organized by Holger Schlarp (DESY) and Erik Bründermann (KIT)
- > 2.5 days in-person meeting (2020 & 21 only remote)
- 50...70 mainly young attendees
- Talks, speed talks and posters mainly by Master-, PhD students and post-doc from Helmholtz
- Tutorials by senior scientists
- $\Rightarrow\,$ Networking between students and post-docs
- \Rightarrow Well appreciated by young participants

Assessment for ARIES-ADA

Mission accomplished for ARIES-ADA in 2017 to 2021:

- Workshops related to one special subject acts as an addition to conferences
- > Inclusion of engineers and PhD-students is a central pillar for tech. realization & knowledge transfer
- Focused talks on achievement & failures (you can gain for others: '...don't do a mistake twice...')
- > Large interest within the community: \approx 100 attendees online, discussion in breakout rooms

 \approx 30 - 90 attendees for in-person meeting

> Well appreciated by the beam diagnostics community: 4 summary talks at IBIC conference

My personal experience and organizational view to ARIES-ADA:

- \blacktriangleright There are many things to learn from other labs' experiences \Rightarrow very valuable workshops
- Must be an actual topic ⇒ interest by many people to achieve 'critical mass',
 ⇔ should be in the actual interest of the organizers
- \blacktriangleright No repeating events as subject is too special \Rightarrow '...you participate either now or never...'
- > Pleasure atmosphere & small talks (e.g. **one** hotel to keep people together) are essential for collaborations
- Advantage: Financial budget (in total 160 k€) to cover part of the travel costs
- > In-person meeting are required to **establish** collaborations
- Remote meeting: Some advantages (e.g. more attendees) but doesn't support personal contact
- > Workshop organization: Large amount of man-power needed (online \approx 3, in-person \approx 6 FTE weeks)
- It makes fun to host such workshops and invite people
- > However, I would not have invested such efforts without 'pressure' via ARIES-ADA

Thank you very much for your attention!

Back-up slides

Ultra-thin Wire for linear Wire Scanner

Talk by Gian Luca Orlandi on behalf of PSI, Elettra and IOM-CNR Trieste team

Outgassing rates of Polymers for UHV Applications

Talk by Ivo Wevers on behalf of CERN

Challenge: Insulator for UHV applications Method:

- Pumping speed measurement
- Residual gas analysis

Comparison of Maylar, PEEK, Kapton & Vespel

Relation to in-air storage

Result:

- Kapton has lowest outgassing
- Decrease outgassing by
 - Baking to $100-200^{\circ}\text{C}$
 - Storage in dry atmosphere
- Minimizing exposure to air Quantitative 3-step model applied (moisture evaporation and bulk diffusion) Detailed report available

Example: Outgassing for different sample sizes as a function of time (log-log plot)

