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Mo#va#on:  Would like a theory of ac#ve ma7er



From talk by Julien Tailleur

• breaking *me-reversal invariance 
generates beau*ful new types of 
behavior:
• Giant number fluctua9ons
• Mo9lity induced phase separa9on

van der Linden et al PRL, 123, 098001 (2019)



At high densi7es, dynamics change

Henkes, Fily, Marche?, PRE 2011



The dynamics become “swirly”: long-range 
velocity correla7ons

Henkes et al Nature communicaEons (2020)



dynamics share some features with fluids, some 
with solids (c.f. fluid turbulence talks last week)

Mandal et al, Nature Comm, 2020



Displacements clearly related to underlying solid-
like structure, looks “self-shearing”

G. Briand and O. Dauchot, PRL, (2016)



In ordered systems, one can design func7on 
using defects:

VanSaders and Glotzer, PNAS 2021



Today:  long-range velocity correla7ons
Tomorrow: intermiBency and avalanches



These are images from simula7ons that are 
“solid-like” in the passive state

Henkes et al Nature communicaEons (2020)

soK discs with packing fracEon above jamming or vertex model with shape index below rigidity



Dense Fluid Systems
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Velocity Correla7ons: solid-like star7ng point
Equal 'me velocity correla'on length increases with increasing persistence 'me.
Arrested ac've systems.
Lines are theore'cal calcula'ons.

Caprini et al. Phys. Rev. Res., 2, 023321 (2020). Henkes et al., Nat. Commun., 11, 1 (2020).

Theory assumes vibra/ons around average posi/ons. Theory approximates system as an amorphous elas/c solid.



Velocity Correla7ons: liquid-like star7ng point
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Equal Eme velocity correlaEons grow with increasing persistence Eme.
Dashed lines are numerical fits.
Solid lines are predicEons of an approximate theory for longitudinal correlaEons.

Grzegorz Szamel and Elijah Flenner, EPL 133, 60002 (2021)



Comparison of scaling predic#on with simula#ons

Grzegorz Szamel and Elijah Flenner, EPL 133, 60002 (2021)

ℓ = 𝜏𝐵!/(𝛾𝜌)

𝜉|| and 𝜉" obtained from fits to 𝜔||(𝑞) and 𝜔"(𝑞).
Open symbols are results of the theory. 

Fixed magnitude of the velocity. Fixed acEve temperature.



References for deriva7ons today:

• Henkes, S. Kostanjevec, K., Collinson, J.M, Sknepnek, R and Ber*n, E., 
Nat. Commun., 11, 1 (2020).
• see also Henkes, Fily, MarcheG PRE 2011
• Bi, Yang, MarcheG, Manning PRX 2016

• Grzegorz Szamel and Elijah Flenner, EPL 133, 60002 (2021)



Day 2
Review: response of materials 

under shear

here, focus on zero temperature, limit of infinitely slow driving



Sheared disordered materials are well-studied

W. Johnson Group, Caltech F. M. Chester and J. S. Chester, Tectonophys.
295, 1998.

bulk metallic glasses granular fault gouge

Though perhaps s,ll not well understood.

colloids foams

Amann et al 2013 Lauridsen et al 2002



Plas7c rearrangements and avalanches 
are well-studied in three regimes:
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Ozawa PNAS 2018

c.f. talk by Kirsten 
Martens yesterday



Athermal, Quasista7c Shear (AQS)

Maloney and Lemaitre PRE 2006



Quan7fying linear response and 
avalanches in the pre-yielding regime

∆𝛾

𝜇

local 
shear 
modulus

size of 
avalanche

strain to saddle

Morse et al Physical Review Research (2020)

Peter Morse

How do avalanches 

depend on system size (N) 

and pressure (p) ?
∆𝜎



Shear modulus
• Calculated directly from dynamical matrix (curvatures of landscape)
• Observe finite-size scaling: 𝜇 = 𝑁"𝐹 𝑝#𝑁 , 𝑦 = −1; 𝜂 = 1/2
• Isosta*c system is singular in linear response, while at any finite pressure 

the system is analy*c around 𝑝 → 0$ (hard sphere limit)

Goodrich PRL 2012
Dagois-Bohy PRL 2012

𝜇 𝜇N



Nonlinear stress drops show same finite-size 
scaling as shear modulus(!)

2d Hertzian 2d Hookean

• Extend scaling argument: z − 𝑧*+, = 𝑁-𝑊 𝑁.𝑝 ; 𝛽 = 2 𝛼 − 1
• 𝛼=5/2 for Hertzian and 𝛼=2 for Hookean O’Hern PRL 2002,Goodrich PRL 2012

• For systems in the high N and p regime: Δ𝜎 ~ /
0

Morse et al Physical Review Research (2020)

Peter Morse



Stress drops associated with bursts of 
localized deforma3on

Ethan Stanifer

persistent homology clustering of nonaffine displacements

Stanifer and Manning, SoK Ma]er 2022



What happens in ac,ve ma/er?
Lots of sugges9ve results at finite rates of driving

Olsson, Teitel, PRL (2007)

Below ɸJ

Above ɸJ

Liao, Xu, SoK Ma]er (2018)

Self propelled parEclessheared granular ma]er



dynamics share some features with fluids, some 
with solids (c.f. fluid turbulence talks last week)

Mandal et al, Nature Comm, 2020



What happens in ac,ve ma/er?
Lots of sugges9ve results at finite rates of driving

Nandi and Gov (Nandi EPJE 2018, 2019)
Mandal and Sollich (arXiv:1911.04558, 2020)

Silke Henkes and co-workers (Nature CommunicaEons, 2020)

Plus addi9onal work by:



At low forces and large persistence #mes, 
dynamics becomes highly intermi7ent

Mandal et al, Nature Comm, 2020



Intermi7ency driven by local plas#c rearrangements 

Mandal et al, Nature Comm, 2020



What happens in ac,ve ma/er?
Let’s try to first look at the analogous limit to AQS:

zero temperature, in the limit that driving is infinitely persistent and 
infinitely slow

focus on ini9al response (pre-yielding regime)

Peter Morse Elisabeth 
Agoritsas

Eric CorwinSudeshna Roy
Ethan Stanifer

Morse et al, PNAS, 2021



Recall:
Athermal, Quasista7c Shear (AQS)

Maloney and Lemaitre PRE 2006



Athermal, Quasista7c Random 
Displacement (AQRD)

Morse et al, PNAS, 2021Fix the displacement (fixed strain experiment), not the force (creep experiment)



Recall: linear, nonlinear response

∆𝛾
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AQRD and AQS exhibit exactly the same scaling with N,p

AQS
AQRD
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AQRD and AQS exhibit exactly the same scaling with N,p

AQS
AQRD
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AQRD and AQS exhibit exactly the same scaling with N,p

AQS
AQRD
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AQRD is about 2 orders of magnitude s*ffer 



Random Gaussian displacement fields



S7ffness changes with correla7on length



increasing correla9on 
length

S7ffness changes with correla7on length



The shear modulus appears to be a 
power law func#on of the 
correla#on length

1

1.4

Morse et al, arXiv:2009.07706, 2020



Why?



I will work a 3ny bit of this out on the board: predic3on 
for infinite-dimensional solu3on for AQRD dynamics

Elisabeth 
Agoritsas

increasing correlaEon length

E. Agoritsas, J. Stat. Mech (2021).

local strain induced by acEve
displacement field |c >



Test: calculate MF expression for      , compare 
Neglects all higher order correlaEons between parEcles displacements in lower dimensions. 

Morse et al, PNAS, 2021



Let’s treat                       as the rescaling parameter in low d:



Let’s treat                       as the rescaling parameter in low d:

Morse et al, arXiv:2009.07706, 2020

strain to saddle stress drop



What about beyond “pre-yielding” regime
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Ozawa PNAS 2018

c.f. talk by Kirsten 
Martens yesterday



Outlook: changing material stability:



Julia Giannini

Can we break this direct link between 
shear and ac7ve maBer?

Giannini, Stanifer, Manning, SoK Ma]er 2022



51

Not so different from real crowds with dangerous crushing events

https://www.youtube.com/watch?v=SYO5kJm6JNM



Conclusions and Outlook

• In the limit of slow driving, shear strain is simply a special case of infinitely 
persistent ac8ve driving.
• The linear (shear modulus) and nonlinear (stress drop, strain to saddle) response in 

the pre-yielding regime possess iden7cal scaling.
• All the data can be collapsed using the effec7ve parameter                                as 

predicted by mean-field
• The mean-field predic7on for the exact value of                                  is close, but not 

quite right.
• The macroscopic shear modulus and stress overshoot changes with material stability 

as expected, though the nature of the yielding transi7on may change.
• What happens to shear bands in bri<le materials? Are the same defects 

excited?
• What happens at finite strain rates, persistence 8mes? (c.f. Kirsten 

Martens)



Infinite-dimensional solu#on for AQRD dynamics
Random local forcingGlobal shear

Elisabeth 
Agoritsas

E. Agoritsas, J. Stat. Mech (2021).

gap between pairs

non-affine moEon
distance between pairs



Infinite-dimensional solu#on for AQRD dynamics
Random local forcingGlobal shear

Elisabeth 
Agoritsas

In infinite dimensions, global shear is a special case of random local forcing:

(unitless)

Generally then:

For individual local displacements:

For relative local displacements:

E. Agoritsas, J. Stat. Mech (2021).



Infinite-dimensional solu#on for AQRD dynamics
Random local forcingGlobal shear

Elisabeth 
Agoritsas

Large-dimension assumpEons:
⇒ Self-consistent scalar
stochastic process for the gap, 
with three kernels:

Many-body dynamics:

E. Agoritsas, J. Stat. Mech (2021).



Infinite-dimensional solu#on for AQRD dynamics

Elisabeth 
Agoritsas

increasing correlaEon length

E. Agoritsas, J. Stat. Mech (2021).



Extra slides



2D Ac7ve Brownian Par7cles

• Persistence 8me 𝜏 = 1/𝐷! .

• Long 8me MSD of an isolated par8cle 
grows as 2𝑣!"𝑡/𝐷#.

• Define an ac8ve temperature 
𝑇$ = 𝑣!"𝛾/(2𝐷#).
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𝜙
·
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Approximate Theory

𝛾𝐫
·
& = −𝛻&∑

'
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Start from the equa-on of mo-on.

Derive an expression rela-ng velocity polariza-on and force fields.
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Rewrite first term on the right hand side.

Interac-on part of the pressure tensor.



Approximate Theory
Assume in direct space 𝚷#(𝐫; 𝑡) can be expressed in terms of the devia-on of the microscopic density 𝜌.

𝚷5(𝐫; 𝑡) ≈ ⟨𝚷5(𝐫; 𝑡)⟩ + 𝐈 𝜕6𝑃5 𝜌(𝐫; 𝑡) − 𝜌
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#
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2
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1 + 𝑞#𝜏𝐵5/(𝛾𝜌)

ABer some manipula-ons we arrive at the following expression.

𝐵! = 𝜌𝜕"𝑃! is the interac-on part of the bulk modulus.

ℓ = 𝜏𝐵!/(𝛾𝜌)

We can iden-fy a longitudinal correla-on length.

Grzegorz Szamel and Elijah Flenner, EPL 133, 60002 (2021)



Difference between strain and unit vector in 
coordinate space



Algorithm for AQRD



Random displacement vs. Random force



Genera7ng Gaussian random field


