Higgs Hunting 2022, September 12th 2022

Studying the coupling of the Higgs boson to fermions with the ATLAS experiment

G. Callea on behalf of the ATLAS collaboration

Introduction

Measurements of the Higgs coupling to fermions (~70%) provide stringent tests to the Standard Model, as the Yukawa sector offers no fundamental insight into the fermion mass hierarchy

Higgs to third generation fermion couplings observed (different production modes studied)

N.B. LFV measurements not covered here. See presentation by Yuan-Tang Chou

VH(bb) combination

ATLAS-CONF-2021-051

VH, H \rightarrow bb extensively studied using full Run 2 dataset with complementary p_{τ}^{H} acceptance

VH(bb) combination: EFT interpretation ATLAS-CONF-2021-051

STXS p_{τ}^{V} measurements interpreted in terms of a SM effective lagrangian (SMEFT) considering D = 6 operators √s = 13 TeV, 139 fb⁻¹ ATLAS Preliminary

Constraints on Wilson coefficients sensitive to modifying VH, $H \rightarrow bb$ production are placed at 95% CL (either 1 or 2 POI fits)

Wilson coefficients are consistent with the SM predictions

3

Combination strengthens limits w.r.t. individual analyses

Boosted H -> bb all-hadronic

Targeting a highly boosted Higgs ($p_{\tau}^{H} > 450 \text{ GeV}$) recoiling against a jet

- Select 2 large-R jets
- One containing 2 b-tagged track-jets
- Large background from multi-jet production
- Event categorisation:
 - **SR**: SRL (SRS) where the lead (sub-lead) jet is double b-tagged
 - **VR**: To study V+jet and multi-jet (modelled using a parametric function) models
 - **CR**: To study top events

Leading Large-R Jet

Boosted H -> bb all-hadronic

PRD 105 (2022) 092003

6

VBF, H->bb analyses

Search for H->bb decays in VBF events with 126 - 132 fb⁻¹ of Run2 data

All-hadronic

- Select events with 2 central b-tagged and 2 VBF-like jets
- BDT and ANNs trained to aid the signal/background discrimination and define the analysis categories

EPJC 81 (2021) 537

VBF+photon

- Similar strategy as the all-hadronic with requirements on an isolated photon
- The presence of the photon enriches the VBF purity JHEP 03 (2021) 268

150

200

50

100

VBF, H->bb analyses

The signal strength measurements are statistically combined

- Both analyses are limited by the statistical unc.
- Sensitivity driven by the all-hadronic channel
- H->bb decay established at 3σ (exp. and obs) in VBF alone

ttH(bb) analysis

The strongest Yukawa coupling can be probed directly with ttH production

- Selecting events with one or two leptonically decaying tops
- Events classified according to the number of leptons, jets and b-jets
- Machine learning techniques to aid the signal/background discrimination
- tt+jets is the dominant background

Dedicated ttH(bb) talk by Neelam Kumari

Classification BD1

JHEP 06 (2022) 097

JHEP 06 (2022) 097

ttH(bb) analysis

Profile likelihood fit to extract μ_{ttH}

Boosted category in $p_{\tau}^{H} > 300 \text{ GeV}$ (single-lep channel)

Cross section measurement in 5 STXS bins defined by the p_{T}^{H}

30

κ_c

EPJC 82 (2022) 717

other Higgs couplings are SM-like

is set to |k_| < 8.5 @ 95% CL

Offers a unique chance to directly probe the coupling of the Higgs boson to the 2nd generation quarks Constraint on k when all the

Optimised c-jet tagger with b-jet veto

VH, H->cc

- Analysis strategy validated with diboson analyses
- Stat. and syst uncertainties of the same magnitude

VHbb/cc combination

-8 -6 -4 -2 0 2 4

 $\frac{\kappa_c}{\kappa_b}$

H -> $\tau\tau$ analysis

Most sensitive probe of Higgs boson coupling to leptons (2nd most copious fermionic decay)

- Analysis targets four production modes
- Dominant background from Z-> $\tau\tau$ events (MVA used to enhance the discrimination)
- Z-> $\tau\tau$ normalisation determined from Z -> II data samples with the "kinematic embedding" technique ATLAS

Missing Mass Calculator algorithm used to improve the $\tau\tau$ mass resolution to account for neutrino energy losses

measured with a precision of 13%, and 9 STXS bins were measured

PLB 812 (2021) 135980

Most promising probe of Higgs coupling to 2nd generation fermions

• Z-> $\mu\mu$ is the dominant background

H -> $\mu\mu$ analysis

- BDTs are trained in each exclusive signal region targeting different production modes
- Sensitivity driven by VBF targeted categories. Very statistically limited

- Observed (expected) significance of 2.0 (1.7) σ (wrt background only)
- Approaching sensitivity to test the SM predictions
- One of the most important topics for Run3

H -> ee analysis

Directly probes the magnitude of y_e

Similar analysis strategy to H-> $\mu\mu$

- Main background from DY process
- Binned likelihood fit in the 110-160 GeV region of m_{ee}
- Observed (expected) limit at 95% CL:

 \circ BR_{H->ee} < 3.6 (3.5) x 10⁻⁴

LFV H->e μ studied in the paper as well

Summary

ATLAS Run2 analyses improved our understanding of the Higgs boson's coupling to fermions

Couplings to the third generation fermions are well established!

Exciting progress on the coupling to second generation fermions:

- H -> $\mu\mu$ is approaching the level at which the SM predictions can be tested
- The search for H -> cc has tighten up the constraints on k_c

Looking forward to having new datasets to study the fermion couplings!

Backup

VHbb resolved and boosted

VHbb combination

VHbb combination

2 lep, $p_{T}^{V} > 40$ 2 lep, ≥ 3 jets, 2 lep, 2 jets, 2 lep, ≥ 3 jets, 2 lep, 2 jets, 2 lep, ≥ 3 jets, 2 lep, 2 jets, 0 lep, p^v_T > 400 G 0 lep, p^v_T > 400 G 0 lep, 3 jets, 0 lep, 2 jets, 0 lep, 3 jets, 0 lep, 2 jets, 1 lep, p^v_T > 400 G 1 lep, p^v_T > 400 G 1 lep, 3 jets, 1 lep, 2 jets, 1 lep, 3 jets, 1 lep, 2 jets,

	ATLA	s Sim	ulatio	n Preli	minar	y √s	= 13 7	ΓeV, 1	39 fb ⁻¹		
00 GeV, boosted SR								0.2	3.6	-	120 €
250 < p [∨] _⊤ < 400 GeV							0.8	20.7	0.2		ver
250 < p _x < 400 GeV							0.3	8.4	0.1		ē
150 < p _T ^V < 250 GeV						1.6	74.0	1.2		_	100 2
150 < p_{_{T}}^{v} < 250 GeV						0.8	33.8	0.5			i o ĝ
75 < p_T^V < 150 GeV					1.2	124.7	2.9				
, 75 < p _T ^V < 150 GeV					0.9	78.4	1.4				80
GeV, boosted LP SR			0.1	1.5				0.6	5.4		00
BeV, boosted HP SR			0.1	1.3				0.6	6.0		
250 < p _T ^V < 400 GeV		0.4	4.4	1.1			3.6	23.3	1.5		60
250 < p ^v _T < 400 GeV		0.3	4.8	1.4			2.7	24.2	1.8		00
150 < p ^v _T < 250 GeV	2.8	22.6	7.0	0.3		12.5	93.0	9.8	0.1		
150 < p _T ^V < 250 GeV	2.1	22.6	7.5	0.5		11.0	95.0	10.9	0.1	_	10
GeV, boosted LP SR			0.8	8.8					0.1		40
BeV, boosted HP SR			0.9	9.8					0.1		
250 < p < 400 GeV		4.8	35.4	2.8			0.1	0.6	0.2		20
250 < p _T ^V < 400 GeV		3.8	37.2	3.2				0.4	0.1		20
150 < p _T ^V < 250 GeV	16.2	110.5	13.4	0.1		0.7	3.5	1.0	0.1		
150 < p _T ^V < 250 GeV	12.7	118.6	15.1	0.2		0.4	2.4	0.6			0
$\begin{array}{c} & W_{\mathcal{H}_{1}} \underset{p}{}_{p} \underset{r}{}_{w_{i}} W_{\mathcal{H}_{1}} \underset{150}{}_{g} \underset{p}{}_{p} \underset{r}{}_{w_{i}} \overset{2}{\sim} \underset{250}{}_{g} \underset{p}{}_{w_{i}} \overset{2}{\sim} \underset{r}{\sim} \underset{1}{\sim} \underset{2400}{}_{g} \underset{Ge_{V}}{}_{e_{V}} \overset{2}{\sim} \underset{1}{\sim} \underset{250}{}_{g} \underset{p}{}_{w_{i}} \overset{2}{\sim} \underset{1}{\sim} \underset{250}{}_{g} \underset{p}{}_{w_{i}} \overset{2}{\sim} \underset{1}{\sim} \underset{250}{}_{g} \underset{q}{}_{e_{V}} \overset{2}{\sim} \underset{250}{}_{e_{V}} \overset{2}{\sim} \underset{250}{}_{e_{V$											

ATLAS Simulation Preliminary $\sqrt{s} = 13$ Te							3 TeV					
2 lep, $p_{_{\rm T}}^{_{\rm V}}$ > 400 GeV, boosted SR								4.9	95.1			%
2 lep, \geq 3 jets, 250 < $p_{_{T}}^{\vee}$ < 400 GeV							3.8	95.0	1.1	-	90	Ľ
2 lep, 2 jets, 250 < p ^v _T < 400 GeV							3.8	95.1	1.1			itio
2 lep, \geq 3 jets, 150 < p_{τ}^{V} < 250 GeV						2.0	96.3	1.6			80	rac
2 lep, 2 jets, 150 < p ₁ < 250 GeV	_					2.4	96.2	1.4				al f
2 lep, ≥ 3 jets, 75 < p_{T}^{V} < 150 GeV	-				1.0	96.7	2.2			-	70	gna
2 lep, 2 jets, 75 < p _T ^V < 150 GeV	-				1.1	97.2	1.7					ŝ
0 lep, $p_{T}^{V} > 400 \text{ GeV}$, boosted LP SR	-		0.7	20.3				7.4	71.5	-	60	
0 lep, p_{T}^{V} > 400 GeV, boosted HP SR	-		0.7	16.9				7.2	75.3		_	
0 lep, 3 jets, $250 < p_T^{\vee} < 400 \text{ GeV}$		1.3	12.9	3.3			10.3	67.8	4.3	-	50	
0 lep, 2 jets, $250 < p_T^{V} < 400 \text{ GeV}$		0.9	13.7	4.1			7.6	68.6	5.1			
0 lep, 3 jets, 150 < p [∨] _⊥ < 250 GeV	1.9	15.2	4.7	0.2		8.5	62.7	6.6	0.1	_	40	
0 lep, 2 jets, 150 < p ^V _T < 250 GeV	1.4	15.1	5.0	0.3		7.4	63.4	7.3	0.1			
1 lep, $p_{_{T}}^{V}$ > 400 GeV, boosted LP SR	-		8.5	90.1				0.1	1.4	_	30	
1 lep, p_{τ}^{v} > 400 GeV, boosted HP SR	-		8.2	90.9					0.9			
1 lep, 3 jets, $250 < p_{T}^{V} < 400 \text{ GeV}$	0.1	10.9	80.7	6.3			0.2	1.4	0.4	_	20	
1 lep, 2 jets, 250 < p ₁ < 400 GeV	-	8.4	83.2	7.1			0.1	1.0	0.2		1.0	
1 lep, 3 jets, 150 < p ^v _T < 250 GeV	11.1	75.9	9.2	0.1		0.5	2.4	0.7	0.1		10	
1 lep, 2 jets, 150 < p ₁ < 250 GeV	8.4	79.0	10.1	0.1		0.3	1.6	0.4				
$\begin{array}{c} W_{H,\ p} \underbrace{W_{H,\ 150}}_{T \ < \ 150} \underbrace{W_{H,\ 250}}_{Q \ < \ p} \underbrace{W_{H,\ p} \underbrace{W_{I,\ 150}}_{V \ < \ 150} \underbrace{Z_{H,\ 250}}_{Q $												

VHbb combination

Boosted Hbb all-hadronic

Drocorr		Jet $p_{\rm T}$ rat	nge [GeV]	
Frocess	250 - 450	450 - 650	650 - 1000	> 1000
		SRL		
ggF	_	0.56	0.50	0.39
VBF	_	0.17	0.16	0.17
VH		0.14	0.18	0.25
$t\bar{t}H$	-	0.13	0.16	0.19
		\mathbf{SRS}		
ggF	0.28	0.46	0.43	_
VBF	0.07	0.19	0.21	
VH	0.26	0.24	0.26	
$t\bar{t}H$	0.39	0.11	0.10	—

Uncertainty Contribution	$p_{\rm T}^H > 450 { m ~GeV}$
Total	3.5
Statistical Systematic	2.6 2.3
Jet systematic uncertainties Modeling and theory systs. Flavor-tagging systs.	$2.2 \\ 0.8 \\ 0.2$

VBF H->bb all-hadronic

Uncertainty	$\sigma(\mu_{\text{VBF},H \to b\bar{b}})$
Statistics	±0.32
NR Background Bias	±0.15
Embedded Z	± 0.05
Experimental	+0.10/-0.06
Trigger	+0.07/-0.03
Jet	+0.07/-0.04
Flavor Tagging	+0.02/-0.01
Other	+0.03/-0.02
Signal Theory	+0.06/-0.03

VBF, H->bb all-hadronic

VBF, H->bb all-hadronic

VBF, H->bb + photon

Source of absolute uncertainty	$\sigma(\mu_H)$ down	$\sigma(\mu_H)$ up
Statistical		
Data statistical	-0.78	+0.80
Bkg. fit shapes	-0.19	+0.22
Bkg. fit normalizations	-0.51	+0.52
Z boson normalizations	-0.15	+0.14
Systematic		
Spurious signal	-0.24	+0.21
Theoretical	-0.01	+0.08
Photon	-0.01	+0.03
Jet	-0.06	+0.20
b-tagging	-0.02	+0.11
Auxiliary	-0.01	+0.04
Total	-0.99	+1.04
Total statistical	-0.96	+0.99
Total systematic	-0.25	+0.32

Criteria	$ au_e au_\mu$	$\tau_{\rm lep}$	$\tau_{\rm had}$	$ au_{ m had} au_{ m had}$
		$\tau_e \tau_{\rm had}$	$\tau_{\mu}\tau_{\rm had}$	
N(e)	1	1	0	0
$N(\mu)$	1	0	1	0
$N(\tau_{\rm had-vis})$	0	1	1	2
N(b-jets)	0 (85% WP)	0 (85% WP)	0 (85% WP)	0 (70% WP)
				$(\geq 1 \text{ or } 2 \text{ in ttH categories})$
$p_{\rm T}(e) [{ m GeV}]$	>15 to 27	> 27		
$p_{\mathrm{T}}(\mu) \mathrm{[GeV]}$	>10 to 27.3		> 27.3	
$p_{\rm T}(\boldsymbol{\tau}_{\rm had\text{-}vis})[{\rm GeV}]$		>	30	>40, 30
Identification	e/μ : Medium	$e/\mu/\tau_{\rm had-v}$	_{is} : Medium	$\boldsymbol{\tau}_{\mathrm{had-vis}}:$ Medium
Isolation	$e{:}$ Loose, $\mu{:}$ Tight	e: Loose	μ : Tight	
Charge		Opposit	te charge	
$E_{\rm T}^{\rm miss}$ [GeV]		>	20	
Kinematics	$\label{eq:main_states} \begin{aligned} \overline{m_{\tau\tau}^{\rm coll} > m_Z - 25{\rm GeV}} \\ 30{\rm GeV} < m_{e\mu} < 100{\rm GeV} \end{aligned}$	$m_{\rm T} <$	$70{ m GeV}$	
Leading jet	$p_{\mathrm{T}} >$	$40{\rm GeV}$		$p_{\rm T} > 70 {\rm GeV}, \eta < 3.2$
Angular	$\begin{array}{l} \Delta R_{e\mu} < 2.0 \\ \Delta \eta_{e\mu} < 1.5 \end{array}$	$\Delta R_{\ell au_{ m had}} \ \Delta \eta_{\ell au_{ m had}} $	$ -v_{\rm is} < 2.5$	$\begin{array}{l} 0.6 < \Delta R_{\tau_{\mathrm{had}\text{-vis}}\tau_{\mathrm{had}\text{-vis}}} < 2.5 \\ \left \Delta \eta_{\tau_{\mathrm{had}\text{-vis}}\tau_{\mathrm{had}\text{-vis}}} \right < 1.5 \end{array}$
Coll. app. x_1/x_2	$\begin{array}{l} 0.1 < x_1 < 1.0 \\ 0.1 < x_2 < 1.0 \end{array}$	0.1 < x 0.1 < x	$c_1 < 1.4$ $c_2 < 1.2$	$\begin{array}{l} 0.1 < x_1 < 1.4 \\ 0.1 < x_2 < 1.4 \end{array}$

Embedding:

The kinematic properties of the Z boson are reconstructed with a much better resolution in the Z -> II decay channel than in the Z -> $\tau\tau$ one due to the absence of neutrinos and the excellent momentum resolution of the ATLAS detector for electrons and muons.

The simplified embedding consists of a rescaling of the transverse momentum of each reconstructed lepton through parameterisation, followed by a recomputation of all the relevant kinematic quantities in the analysis.

Missing Mass Calculator:

Advanced likelihood-based technique which relies on the information about the τ -lepton candidate momenta, the presence of additional jets, $E_{T,miss}$ and the type of τ -lepton decay

	Variable	VBF	V(had)H	tt H v s $t\overline{t}$	tt H v s $Z \to \tau \tau$
Jet properties	Invariant mass of the two leading jets $p_{T}(jj)$ Product of η of the two leading jets Sub-leading jet p_{T} Leading jet η Sub-leading jet η Scalar sum of all jets p_{T} Scalar sum of all <i>b</i> -tagged jets p_{T} Best <i>W</i> -candidate dijet invariant mass Best <i>t</i> -quark-candidate three-jet invariant mass	•	•	•	• • •
Angular distances	$\begin{array}{l} \Delta \phi \text{ between the two leading jets} \\ \Delta \eta \text{ between the two leading jets} \\ \Delta R \text{ between the two leading jets} \\ \Delta R(\tau \tau, jj) \\ \Delta R(\tau, \tau) \\ \text{Smallest } \Delta R \text{ (any two jets)} \\ \Delta \eta(\tau, \tau) \end{array}$	•	• • •	• •	•
τ prop.	$\begin{array}{l} p_{\rm T}(\tau\tau) \\ {\rm Sub-leading} \ \tau \ p_{\rm T} \\ {\rm Sub-leading} \ \tau \ \eta \end{array}$			•	•
H cand.	$p_{\mathrm{T}}(Hjj) \ p_{\mathrm{T}}(H)/p_{\mathrm{T}}(jj)$	٠	•		
$\vec{E}_{\mathrm{T}}^{\mathrm{miss}}$	Missing transverse momentum $E_{\rm T}^{\rm miss}$ Smallest $\Delta \phi \ (\tau, \vec{E}_{\rm T}^{\rm miss})$		•	•	•

Source of uncertainty	Impact on Δ Observed	$\sigma / \sigma(pp \to H \to \tau \tau) $ [%] Expected
Theoretical uncertainty in signal	8.7	8.5
Jet and $\vec{E}_{\mathrm{T}}^{\mathrm{miss}}$	4.5	4.2
Background sample size	4.0	3.7
Hadronic τ decays	2.1	2.1
Misidentified τ	2.0	2.0
Luminosity	1.8	1.8
Theoretical uncertainty in $Z + jets$ processes	1.7	1.2
Theoretical uncertainty in top processes	1.1	1.1
Flavour tagging	0.4	0.5
Electrons and muons	0.4	0.4
Total systematic uncertainty	12.0	11.4
Data sample size	7.2	6.7
Total	13.9	13.2