Differential and CP measurements in ttH/tH (H→bb) with ATLAS

On behalf of ATLAS Collaboration

Higgs Hunting 2022 Centre de Physique des Particules de Marseille Aix-Marseille Université / IN2P3-CNRS

September 12th, 2022

Lagrangian can be expressed as a superposition of CP-even and a CP-odd terms

$$\mathcal{L}'_{t\bar{t}H} = -\kappa'_t y_t \phi \bar{\psi}_t (\cos \alpha + i\gamma_5 \sin \alpha) \psi_t$$

Pure CP-even

Pure CP-odd

- Admixtures of CP-even and CP-odd are still allowed experimentally.
- CP mixing parametrised via mixing angle α and coupling strength modifier κ'_t
- Choice of α and κ't → affects the cross section (XS) and kinematical properties of ttH/tH processes
- Kinematic differences between the pure CP-even and pure CP-odd can be exploited to discriminate between them

 tH production is also powerful probe → challenging due to low XS but sensitive to relative sign of H-t and H-W interaction

Eur. Phys. J. C 75 (2015) 6, 267 arXiv:1504.00611 [hep-ex]

ttH process symmetric around pure CP coupling (α = 90°) → not sensitive to difference between the SM (α = 0) and inverse (α = 180°) coupling

ttH (H→bb): Differential measurement

<u>JHEP 06 (2022) 97</u>

Analysis strategy: Full Run 2 dataset (139 fb⁻¹) First differential measurement of ttH ($H \rightarrow bb$) decays

- Explored through Simplified Template Cross Sections (STXS) formalism where cross-section is measured as a function of the p_T^H
- Events categorised in signal regions (SRs) defined by the #leptons, #jets, #b-tagged jets and #boosted Higgs boson candidates

- BDTs used for reconstructing Higgs boson candidate and signal extraction
- Control regions (CRs) to • constrain tt+≥1b and tt+≥1c

ttH (H→bb): Differential measurement

JHEP 06 (2022) 97

Modelling of tt+bb background

- Irreducible background: tt+heavy flavour (hf) jets
- tt+bb background modelled with 4FS NLO simulation with extra b-jets from ME
- **Dedicated samples** used to assess dominant shape **systematic uncertainties**:
 - Initial and final state radiations, parton showers, NLO matching
 - Relative fractions of tt+hf components

- Normalisation of tt+≥1b estimated with free-floating parameter in the signal extraction fit to data: k(tt+bb)=1.26 ± 0.09
- tt+cc 100% normalisation priori uncertainty
- Observed p_{T(H)} mismodelling covered by dedicated shape uncertainty on tt+bb
- Good post-fit agreement observed, with uncertainty dominated by tt+hf modelling systematics

ttH (H→bb): Differential measurement

- Measurement uncertainty is dominated by systematic uncertainties, especially from tt+≥1b modelling
- Individual STXS signal strengths compatible with SM or μ=0 within 2σ
- Sensitivity beyond p_T=300 GeV, thanks to boosted categories
- Sensitivity: 1.3σ observed (2.7σ exp.)

JHEP 06 (2022) 97

ttH/tH (H→bb): CP measurement

ATLAS-CONF-2022-016

Analysis strategy: Full Run 2 dataset (139 fb⁻¹)

First measurement of the CP properties in the H \rightarrow bb decay channel

Analysis based on ttH ($H \rightarrow bb$) Differential measurement with a few modifications:

- tWH and tHjb considered as signal
- Event categorisation:
 - Step I: CR and preliminary signal regions (PSR) defined
 - Step II: Classification BDT (ttH vs tt+jets) cut used to define final SR (ttH-enrich region) from PSRs
 - CP sensitive observables used in PSRs → exploit angular and kinematic differences in events caused by CP effects

Channel (PSR)	Final SRs and CRs	Classification BDT selection	Fitted observable
Dilepton (PSR ^{$\geq 4j, \geq 4b$})	$ CR_{no-reco}^{\geq 4j, \geq 4b}$	_	$\Delta\eta_{\ell\ell}$
	$CR^{\geq 4j, \geq 4b}$	BDT∈ [−1, −0.086)	b_4
	$\operatorname{SR}_{1}^{\geq 4j, \geq 4b}$	BDT∈ [−0.086, 0.186)	b_4
	$ $ SR ₂ ^{$\geq 4j, \geq 4b$}	BDT∈ [0.186, 1]	b_4
ℓ + jets (PSR ^{$\geq 6j, \geq 4b$})	$ $ CR ^{$\geq 6j, \geq 4b$}	BDT∈ [−1, −0.128)	b_2
	$\operatorname{CR}_{2}^{\geq 6j,\geq 4b}$	BDT∈ [−0.128, 0.249)	b_2
	$ $ SR ^{$\geq 6j, \geq 4b$}	BDT∈ [0.249, 1]	b_2
ℓ + jets (PSR _{boosted})	SR _{boosted}	BDT∈ [−0.05, 1]	Classification BDT score

ttH/tH ($H \rightarrow bb$): CP measurement

ATLAS-CONF-2022-016

ATLAS Preliminary

 \sqrt{s} = 13 TeV, 139 fb⁻

Dilepton

normalised to data vie

Unc. (Total)

 $t\bar{t}H + tH^{\dagger}$ (0°)

ttH + tH[†] (90°

1.0

b₄

SR₁^{≥ 4*j*, ≥ 4*b*} Data 150 100 50 $0.5 \pm 0.5 \pm 0.5$ -0.5 0.5 0.0

[†] normalised to data vield

- Implement 4FS vs 5FS systematic into the fit model: CP sensitive variables being sensitive to
- Uncertainty in α dominated by tt+ \geq 1b modelling
 - mixing angle $\alpha = 11^\circ$ (+56° / -77°)
 - coupling strength modifier: $\kappa'_t = 0.83 (+ 0.30 / - 0.46)$
- Sensitivity to exclude pure CP-odd: 1.2σ

Conclusion

- The first differential measurement in ttH (H→bb) was performed in five STXS using the STXS formalism
- Observed results are compatible with SM expectations within uncertainties → dominated by systematic uncertainties:
 tt+ ≥1b modelling
- ttH (H→ γγ) STXS measurement already performed : Statistically limited at higher p_T
- ttH (H→bb) benefits from sensitivity beyond p_T > 300 GeV

ttH(H $\rightarrow \gamma \gamma$) STXS: <u>ATLAS-CONF-2020-026</u> CP: <u>Phys. Rev. Lett. 125, 061802</u>

- First CP measurement of top Yukawa coupling in ttH/tH (H→bb) production
- Results complement previous measurements obtained from the ttH/tH(H → γγ) decay channel and will allow for a future combined measurement of the CP properties of yt
- In the SM the Higgs boson is a CP-even scalar particle, a pure CP-odd coupling has been excluded at 95% confidence level

Looking forward to Run 3 and beyond for precision measurements Expect to profit from latest developments!

Thank you for your time!

1

Pogion		Dilepton		Single-lepton				
Region	$\mathrm{SR}^{\geq 4j}_{\geq 4b}$	$\mathrm{SR}^{\geq 4j}_{\geq 4b}$ $\mathrm{CR}^{\geq 4j}_{3b \mathrm{hi}}$ $\mathrm{CR}^{\geq 4j}_{3b \mathrm{lo}}$ $\mathrm{CR}^{3j}_{3b \mathrm{hi}}$		$\mathrm{SR}_{\geq 4b}^{\geq 6j}$	$\mathrm{SR}_{\geq 4b}^{\geq 6j}$ $\mathrm{CR}_{\geq 4b \mathrm{\ hi}}^{5j}$ $\mathrm{CR}_{\geq 4b \mathrm{\ lo}}^{5j}$ $\mathrm{SR}_{\mathrm{boo}}$		$\mathrm{SR}_{\mathrm{boosted}}$	
#leptons	= 2		= 1					
#jets		≥ 4		= 3	≥ 6	=	5	≥ 4
@85%		_		≥ 4				
#h tog		_			_		$\geq 2^{\dagger}$	
#0-tag @70%	≥ 4		= 3			≥ 4		_
@60%	_	= 3	< 3	= 3	_	≥ 4	< 4	_
#boosted cand.		_				0		≥ 1
Fit input	BDT		Yield		BDT/Yield	ΔR	bavg	BDT

JHEP 06 (2022) 97

1

JHEP 06 (2022) 97

ATLAS-CONF-2022-016

ATLAS-CONF-2022-016

ttH(H→bb): CP

ATLAS-CONF-2022-016

Uncertainty source	$\Delta \alpha$ [°]		
Process modelling			
Signal modelling	+7.9	-13	
$t\bar{t} + \ge 1b$ modelling			
$t\bar{t} + \ge 1b \text{ 4V5 FS}$	+26	-40	
$t\bar{t} + \geq 1b$ NLO matching	+24	-36	
$t\bar{t} + \geq 1b$ fractions	+15	-23	
$t\bar{t} + \geq 1b$ FSR	+5.2	-9.9	
$t\bar{t} + \geq 1b$ PS & hadronisation	+17	-27	
$t\bar{t} + \geq 1b p_{\rm T}^{b\bar{b}}$ shape	+5.7	-5.3	
$t\bar{t} + \ge 1b$ ISR	+15	-26	
$t\bar{t} + \geq 1c$ modelling	+7.4	-12	
$t\bar{t}$ + light modelling	+2.7	-4.8	
<i>b</i> -tagging efficiency and mis-tag rates			
<i>b</i> -tagging efficiency	+9.7	-17	
<i>c</i> -mis-tag rates	+7.4	-12	
<i>l</i> -mis-tag rates	+2.5	-3	
Jet energy scale and resolution			
<i>b</i> -jet energy scale	+1.9	-4.2	
Jet energy scale (flavour)	+8.8	-13	
Jet energy scale (pileup)	+5.9	-9.2	
Jet energy scale (remaining)	+9	-15	
Jet energy resolution	+6.2	-10	
Luminosity	$\leq \pm 1$		
Other sources	+5.4	-8.8	
Total systematic uncertainty	+43	-58	
$t\bar{t} + \ge 1b$ normalisation	+8.9	-15	
κ'_t	+18	-35	
Total statistical uncertainty	+34	-51	
Total uncertainty		-77	

Uncertainty source	$\Delta \kappa'_t$		
Process modelling			
Signal modelling	+0.09	-0.09	
$t\bar{t} + \ge 1b$ modelling			
$t\bar{t} + \ge 1b \text{ 4V5 FS}$	+0.08	-0.24	
$t\bar{t} + \ge 1b$ NLO matching	+0.15	-0.30	
$t\bar{t} + \ge 1b$ fractions	+0.09	-0.22	
$t\bar{t} + \ge 1b$ FSR	+0.02	-0.02	
$t\bar{t} + \ge 1b$ PS & hadronisation	+0.08	-0.20	
$t\bar{t} + \ge 1b p_{\rm T}^{b\bar{b}}$ shape	+0.07	-0.11	
$t\bar{t} + \ge 1b$ ISR	+0.06	-0.17	
$t\bar{t} + \ge 1c$ modelling	+0.04	-0.10	
$t\bar{t}$ + light modelling	+0.01	-0.01	
<i>b</i> -tagging efficiency and mis-tag rates			
<i>b</i> -tagging efficiency	+0.06	-0.12	
<i>c</i> -mis-tag rates	+0.03	-0.07	
<i>l</i> -mis-tag rates	+0.01	-0.03	
Jet energy scale and resolution			
<i>b</i> -jet energy scale	+0.02	-0.02	
Jet energy scale (flavour)	+0.01	-0.05	
Jet energy scale (pileup)	+0.02	-0.05	
Jet energy scale (remaining)	+0.04	-0.08	
Jet energy resolution	+0.03	-0.09	
Luminosity	$\leq \pm 0.01$		
Other sources	+0.03	-0.07	
Total systematic uncertainty	+0.29	-0.45	
$t\bar{t} + \ge 1b$ normalisation	+0.05	-0.15	
α	+0.09	-0.07	
Total statistical uncertainty	+0.09	-0.10	
Total uncertainty	+0.30	-0.46	