Overview of the *ttW* process and its measurements by the ATLAS experiment

Brendon Bullard on behalf of the ATLAS Collaboration

> Young Scientist Forum Higgs Hunting 2022 Orsay/Paris, France

NATIONAL

The landscape of $t\bar{t} + X$

no sensitivity to top coupling to heavy boson

NLO+NNLL	592^{+155}_{-97} fb	2001.03031	10-
NLO+FxFx	722_{-78}^{+71} fb	2108.07826 \neg	10
ATLAS (36 fb^{-1})	$870 \pm 190 \text{ fb}$	1901.03584	
$CMS \ (36 \ fb^{-1})$	$770^{+180}_{-160} { m ~fb}$	1711.02547	► N
$CMS (138 \text{ fb}^{-1})$	$868 \pm 65 \text{ fb}$	2208.06485	

Brendon Bullard

$t\bar{t}H-ML$ limited by $t\bar{t}W$

Ad-hoc ttW normalization factors

$$\lambda_{t\bar{t}W}^{2\ell,N=2,3} = 1.56^{+0.30}_{-0.28}$$

$$\lambda_{t\bar{t}W}^{2\ell,N\geq4} = 1.26^{+0.19}_{-0.18}$$

$$\lambda_{t\bar{t}W}^{3\ell} = 1.68^{+0.30}_{-0.28}$$

+ NPs for charge-asymmetric, high N_{b-jet} data/MC disagreement

 \rightarrow Need to pin down N_{ie}

Brendon Bullard

$$_{ets,} N_{b-jets}$$
 in $t\bar{t}W^{\pm}$ production

$t\bar{t}W$ as a BSM test bed - EW effects Even though $t\bar{t}W$ is not fully understood, can use it to probe BSM physics

 $tW \rightarrow tW$ scattering accessible via $pp \rightarrow t\bar{t}Wj$ \rightarrow complementary sensitivity to t - Z and t - H couplings

<u>1511.03674</u>

Brendon Bullard

Measurements of $t\bar{t}W$ by the ATLAS experiment

ttW as a BSM test bed - QCD effects Even though $t\bar{t}W$ is not fully understood, can use it to probe BSM physics

Top quark rapidity asymmetry

Brendon Bullard

Asymmetry masked by large $gg \rightarrow t\bar{t}$ contribution at LHC \rightarrow Enhanced asymmetry with W^{\pm} ISR!

Search for leptonic CA in $t\bar{t}V$

- Manifests in leptonic charge asymmetry $A_{c}^{\ell} = \frac{N(\Delta_{y}^{\ell} > 0) - N(\Delta_{y}^{\ell} < 0)}{N(\Delta_{y}^{\ell} > 0) + N(\Delta_{y}^{\ell} < 0)}, \quad \Delta_{y}^{\ell} = |y_{\ell^{+}}| - |y_{\ell^{-}}|$
- + Select events with 3 leptons, $\Sigma Q \pm 1$, $\geq 1b$
 - Small fraction of total decays $t\bar{t}W$ (~1%)
 - Use BDT to associate same sign lepton to top quark
- Define CR to constrain dominant backgrounds
 - $t\bar{t}Z$, $t\bar{t}H$; fake leptons (HF, γ -conversions)
- + Extract A_c^{ℓ} at detector-level, use profile likelihood unfolding to get fiducial A_c^{ℓ} at particle level

Brendon Bullard

Brendon Bullard

Control regions

Brendon Bullard

Particle-level unfolding

- - Top-assignment by $m_{\ell b_0}$ nearest true $m_{\ell b}^{t \to b \ell \nu}$ peak

Brendon Bullard

+ Fiducial region slightly looser than detector-level + Profile likelihood unfolding, no regularization

• Injection tests of $t\bar{t}W$ asymmetry to test bias

Results

- Leading uncertainties come from decorrelating background NF in $\Delta \eta$ bins
 - Modeling uncertainties for $t\bar{t}W$, $t\bar{t}Z$

Detector-level
$$A_{c}^{\ell}(t\bar{t}W) = -0.123 \pm 0.136$$
 (stat.
Expected: $A_{c}^{\ell}(t\bar{t}W)_{MC} = -0.084^{+0.005}_{-0.003}$ (scale)
Particle-level $A_{c}^{\ell}(t\bar{t}W)_{PL} = -0.112 \pm 0.170$ (state)
Expected: $A_{c}^{\ell}(t\bar{t}W)_{MC} = -0.063^{+0.007}_{-0.004}$ (scale)

- Dominated by statistical uncertainties
 - Trade-off in $\sigma \cdot BR$ for cleaner asymmetry environment only gets better in Run III and beyond!

Brendon Bullard

Summary

- + The $t\bar{t}W$ process anomalously large cross section in data in tension with best models Spurred many developments in phenomenology community

 - Until $t\bar{t}W$ is better understood (NNLO calculation), challenging for ML analyses (e.g. $t\bar{t}H$ -ML, $t\bar{t}t\bar{t}$)
- + ATLAS collaboration pursuing robust program of measurements of $t\bar{t}W$ process • Presented **first search** of leptonic charge asymmetry of $t\bar{t}W$ at the LHC!
- + Ancillary $N_{t\bar{t}W}(\Delta \eta^{-}) = 1.59 \pm 0.40$ consistent with ATLAS/CMS measurements • Differential cross sections with full Run II dataset will help resolve tensions

Thanks for your attention!

Backup -

Signal Regions

- Lepton selections +
 - Use single and di-lepton triggers increase efficiency
 - Standard quality requirements (impact parameters, vertex association, calorimeter coverage, isolation BDT)

	Pre-selection		
$N_{\ell} \ (\ell = e/\mu)$	= 3		
$p_{\rm T}^{\ell} \; (1^{ m st}/2^{ m nd}/3^{ m rd})$	\geq 30 GeV, \geq 20 GeV, \geq 15 GeV		
\sum lep. charges	±1		
$m_{\ell\ell}^{ m OSSF}$		≥ 30	GeV
		Region-specifi	c requirements
	SR-1 <i>b</i> -low N_{jets}	SR-1 <i>b</i> -highN _{jets}	SR-2 <i>b</i> -low N_{jets}
N _{jets}	[2,3]	≥ 4	[2,3]
N_{b-jets}	= 1	= 1	≥ 2
$E_{\mathrm{T}}^{\mathrm{miss}}$	$\geq 50 \text{GeV}$	$\geq 50 \text{GeV}$	_
N_{Z} -cand.		=	0
Tight leptons		T	ГТ
e/γ ambiguity-cuts		all	pass

Brendon Bullard

Measurements of $t\bar{t}W$ by the ATLAS experiment

Sherpa signal samples

Nominal: Sherpa 2.2.10 NLO QCD+EW (+1j@NLO, +2,3,4j@LO) + Sherpa PS

Alternate: MG5_aMC@NLO NLO QCD+EW (+1j@NLO, +2j@LO) + Pythia PS w/ FxFx

SR-2*b*-high N_{jets} ≥ 4

 ≥ 2

Control region definitions

	Pre-selection			
$\begin{split} N_\ell (\ell = e/\mu) \\ p_{\rm T}^\ell (1^{\rm st}/2^{\rm nd}/3^{\rm rd}) \\ {\rm Sum \ of \ lepton \ charges} \\ m_{\ell\ell}^{\rm OSSF} \end{split}$	= 3 $\geq 30 \text{GeV}, \geq 20 \text{GeV}, \geq 15 \text{GeV}$ ± 1 $\geq 30 \text{GeV}$			
$\ell^{\rm 1st/2nd/3rd} \\ N_{\rm jets}$	$CR-t\bar{t}Z$ $\ell\ell\ell$ ≥ 4	$CR-HF_e$ $\ell \ell e$ ≥ 2	$\begin{array}{ } \mathbf{CR-HF}_{\mu} \\ \ell\ell\mu \\ \geq 2 \end{array}$	$\begin{array}{ c } \mathbf{CR} - \boldsymbol{\gamma} - \mathbf{conv} \\ \ell \ell e, \ \ell e \ell, \ e \ell \ell \\ \geq 2 \end{array}$
N_{b-jets} E_{T}^{miss}	≥ 2 	= 1 $< 50 \mathrm{GeV}$	= 1 $< 50 \mathrm{GeV}$	≥ 1 $< 50 \mathrm{GeV}$
$N_{Z-\text{cand.}}$ Tight leptons e/γ ambiguity-cuts	= 1 TTT all pass	$ = 0 $ $ TT\overline{T} $ $ all pass$	$= 0$ $TT\overline{T}$ all pass	= 0 TTT $> 1 fail$

Brendon Bullard

 3

Measurements of $t\bar{t}W$ by the ATLAS experiment

14

Systematics breakdown

- Leading uncertainty is background asymmetry estimation
- Additional MC sensitivity in PL due to response matrix bins
- Statistical uncertainties larger due to bin-to-bin correlations

Experime

Jet energy Pile-up b-tagging Leptons $E_{\rm T}^{\rm miss}$ Jet energy Luminosity

MC mode

 $t\bar{t}W \mod$ $t\bar{t}Z$ modell Non-promp $t\bar{t}H \mod I$

Other une $\Delta \eta^{\pm}$ dependence

MC statis

Data stat

Total unc

Brendon Bullard

Detector-level

Particle-level

	$\Delta A_c^\ell(t\bar{t}W)$		$\Delta A_c^\ell (t\bar{t}W$
ental uncertainties resolution scale	0.013 0.007 0.005 0.004 0.004 0.003 0.001	$\begin{array}{l} {\bf Experimental \ uncertainties} \\ {\rm Leptons} \\ {\rm Jet \ energy \ resolution} \\ {\rm Pile-up} \\ {\rm Jet \ energy \ scale} \\ E_{\rm T}^{\rm miss} \\ {\rm Luminosity} \\ {\rm Jet \ vertex \ tagger} \end{array}$	0.014 0.011 0.008 0.004 0.002 0.001 0.001
elling uncertainties lling of modelling ling ling	0.013 0.010 0.006 0.005	$\begin{array}{l} \textbf{MC modelling uncertainties} \\ t\bar{t}W \ \text{modelling} \\ t\bar{t}Z \ \text{modelling} \\ \text{Non-prompt modelling} \\ \text{Others modelling} \\ WZ/ZZ + \text{jets modelling} \\ t\bar{t}H \ \text{modelling} \end{array}$	0.022 0.017 0.015 0.015 0.014 0.006
ndency	0.046	Other uncertainties	0.011
stical uncertainty	0.019	Unfolding bias $\Delta \eta^{\pm}$ dependency	0.011 0.039
istical uncertainty	0.136	MC statistical uncertainty	0.027
ertainty	0.145	Response matrix	0.009
		Data statistical uncertainty	0.170
		Total uncertainty	0.179

2	2
1	7
1	5
1	5
1	4

Top quark asymmetry

Brendon Bullard

LHCTopWG $t\bar{t} + X$ Summary

Brendon Bullard

<u>ATL-PHYS-PUB-2022-030</u>

Partial Run II Inclusive Cross Section by ATLAS

Brendon Bullard

Full Run II Inclusive Cross Section by CMS

Brendon Bullard

tt Charge Asymmetry at the LHC

2208.12095

Brendon Bullard

Measurements of $t\bar{t}W$ by the ATLAS experiment

Brendon Bullard

