





Università degli Studi di Padova

# SM and BSM Higgs searches at LHCb

Speaker: Laura Buonincontri on behalf of the LHCb Collaboration September 13th 2022



#### JINST 3 (2008) S08005 Int. J. Mod: Phys. A 30, 1530022 (2015)

### LHCb detector

- LHCb was originally designed to study b- and c- hadron physics, but is now considered a **general purpose** forward detector
- Excellent track momentum resolution: from 0.4% at 5 GeV to 0.6% at 100 GeV
- Impact parameter (IP) resolution:  $(15+29/p_{T}) \mu m$
- Excellent vertex resolution
- Muon ID efficiency 97% with 1-3% muon pions mis-identification
- LHCb allows to test a phase space region complementary to ATLAS and CMS





2

### Higgs at LHCb

- Main limits in studying Higgs at LHCb are: reduced acceptance with respect to ATLAS and CMS and lower luminosity due to leveling
- However LHCb presents strong points:
  - Excellent vertex reconstruction system (this is a plus for b- and c- tagging and displaced vertex searches)
  - $\circ$  LHCb can complement ATLAS and CMS in searches (forward coverage and low  $p_{\tau}$  threshold trigger)



#### Eur. Phys. J. C 82, 373 (2022)

#### Search for massive long-lived particles decaying semileptonically in 5.4 fb<sup>-1</sup> at $\sqrt{s}=13$ TeV

- Search for massive long-lived particles (LLP) decaying semileptonically into a muon and two quarks with Run II (L=5.4 fb<sup>-1</sup>, 13 TeV)
- Signature: single displaced vertex and a high  $p_{\tau}$  muon
- Two kinds of LLP production processes are considered:
  - Higgs-like bosons from gluon fusion (with mass  $m_{\mu} \in [30,200] \text{ GeV/c}^2$ ) decaying into 2 LLPs with  $m^{LLP}$  from 10 GeV/c<sup>2</sup>
  - Direct production from quark interaction, with LLPs masses  $m^{LLP} ∈ [10,90] \text{ GeV/c}^2$
- LLPs lifetimes considered range goes from 5 ps to 200 ps



- Fit to the reconstructed LLP mass  $\rightarrow$  no signal excess found
- 95 % CL upper limits are set on  $\sigma$ (LLPs) ×  $\mathfrak{B}$ (LLPs  $\rightarrow q\bar{q}\mu$ ) for both searches  $\rightarrow$  sensitivity of the order O(1 pb)



L. Buonincontri - Higgs Hunting 2022- Sept 13th 2022

#### Search for long-lived particles decaying to $e^{\pm} \mu^{\mp} v$

- Search for massive long-lived particles (LLP) flavoured leptonic decays with Run II (L=5.4 fb<sup>-1</sup>, 13 TeV)
- Signature: displaced vertex containing electron and muon of opposite charges
- Three kinds of LLP production processes are considered:
  - Higgs-like bosons from gluon fusion (with mass  $m_{\mu} = 125 \text{ GeV/c}^2$ ) decaying into 2 LLPs
  - Direct production from quark interaction
  - Charged current production (on-shell W decaying into lepton+ LLP)
- LLPs lifetimes considered range goes from 2 ps to 50 ps and LLPs masses  $m^{LLP} \in [7,50] \text{ GeV/c}^2$



- Simultaneous fit to the reconstructed displaced vertex corrected mass and flight distance distributions  $\rightarrow$  no signal excess found
- 95 % CL upper limits are set on the three production mechanisms  $\rightarrow$  sensitivity of the order O(0.1 pb )

L. Buonincontri - Higgs Hunting 2022- Sept 13th 2022

5

6

### Projected sensitivities for LLPs decaying semileptonically

- Projected sensitivities based on Run I results
- Upper limits on the branching fraction of the Higgs boson decay to a pair of neutralinos are calculated for different assumptions of neutralino masses and lifetimes



• most of the LHCb accessible neutralino phase space can be excluded for a branching fraction > 0.5%

→ Further improvements are expected in the Upgrades due to: **higher trigger efficiency** (hardware trigger removal), precise **mapping of the VELO material**, **jet reconstruction techniques** to disentangle low mass jets

## Search for H to bb or cc in association with a W or Z boson

- Search for a Higgs boson ( $m_{H}$ =125 GeV) produced in association with a W or a Z using Run I data (L=2 fb<sup>-1</sup>)
- Signature: pair of heavy tagged jets ( $b\overline{b}$  or  $c\overline{c}$ ) and one or two high  $p_{\tau}$  leptons (electrons or muons)
- Heavy flavour tag: presence of a secondary vertex (SV) in jets
- BDTs used to separate b jets from c jets and heavy from light jets





JINST 10 P06013

7

- No signals are observed, upper limits on  $\sigma$ ·BR at 95% C.L. are set:
  - $\circ \qquad \sigma(\text{ pp}{\rightarrow}\text{W/Z} + \text{H}) \times \textbf{B}(\text{ H} \rightarrow b\overline{b} \text{ }) < 1.6 \text{ pb}$
  - $\circ$  σ( pp→W/Z + H ) × 𝔅( H→ CC)< 9.4 pb

Upper limits on Yukawa couplings: y<sup>b</sup><7 y<sup>b</sup><sub>SM</sub>, y<sup>c</sup><80 y<sup>c</sup><sub>SM</sub>

L. Buonincontri - Higgs Hunting 2022- Sept 13th 2022

### Search for high mass resonances decaying to heavy flavour di-jets

- Studies ongoing for inclusive decay of high mass resonances decaying to bb and cc di-jets
- A first study (L= 1.6 fb<sup>-1</sup>, 13 TeV) in this direction has been performed to measure **bb** and **cc** differential cross section as a function of 4 differential variables (leading jet  $p_{\tau}$ , leading jet  $\eta$ , dijet invariant mass,  $\Delta y^* = \frac{1}{2} |y^0 y^1|$ )



- bb and cc di-jets will be the main QCD background in searches for high mass resonances
- The technique for disentangle the bb and cc processes has been demonstrated

L. Buonincontri - Higgs Hunting 2022- Sept 13th 2022

 Flavour composition determined by fitting the combination of two Multivariate discriminators:

JHEP 02 (2021) 023

 $t_0 = \text{BDT}_{bc|q}(j_0) + \text{BDT}_{bc|q}(j_1),$  $t_1 = \text{BDT}_{b|c}(j_0) + \text{BDT}_{b|c}(j_1).$ 

Cross section ratio also computed as a function of kinematic variables



### Projected sensitivities for Higgs to cc

- The upper limit on  $\sigma(pp \rightarrow W/Z + H) \times \mathcal{B}(H \rightarrow cc)$  obtained in Run 1 was 6400 x  $\sigma_{sM}$  and  $y^c < 80 y^c_{sM}$
- In the HL-LHC we expect to collect 300 fb<sup>-1</sup> at 14 TeV
- The improved VELO performance is expected to increase the c-tagging efficiency from 25% to 35%
- Going from 8 to 14 TeV the VH cross section is expected to increase by a factor 7



LHCB-PUB-2018-009 CERN-LPCC-2018-04

9

## Conclusions

- LHCb allows to perform interesting SM and BSM Higgs searches and in a complementary phase space region with respect ATLAS and CMS
- Studies of BSM (like Long Lived Particles) are ongoing and will improve in the future and with the next upgrades
- In the HL-LHC era, LHCb could push the limit on the Higgs-charm coupling to 2-3 times the SM expectation
- Further improvements are expected: new tagging methods, the search in the inclusive channel (without associated production)

## LHCb performance Run 2



## LHCb performance Run 3



CERN-LHCC-2013-021

### Details on search for long-lived particles decaying to $e^{\pm} \mu^{\mp} v$

Fig. 1 Production modes of the LLP considered in this search. From left to right: direct pair production (DPP), decay of a SM-like Higgs with a mass of  $125 \text{ GeV}/c^2$  produced by gluon-gluon fusion (HIG) and production by charged current (CC)



Corrected invariant mass formula:

$$\tilde{m}_{corr} = \sqrt{m(e\mu)^2 + p(e\mu)^2 \sin^2 \theta} + p(e\mu) \sin \theta$$

## MSSM with R parity violation

L: lepton number, B: baryon number, S: spin of the particle

All SM particles have  $R_p = +1$  and their superpartners have  $R_p = -1$ 

$$R_p = (-1)^{L+3B+2S}$$

neutralino flavoured leptonic decays

$$W_{RPV} = \mu_i L_i H_u + \frac{1}{2} \lambda_{ijk} L_i L_j \bar{e}_k + \lambda'_{ijk} L_i Q_j \bar{d}_k + \frac{1}{2} \lambda''_{ijk} \bar{u}_i \bar{d}_j \bar{d}_k$$

neutralino semileptonic decay

 $\mu_i$ ,  $\lambda_{ijk}$ ,  $\lambda_{ijk}$ ,  $\lambda_{ijk}$  are the coefficients for the RPV interactions, L is the lepton doublet, H the Higgs doublet, e the lepton singlet, Q the quark doublet, d the down quark singlet and u the up quark singlet.

In the Left-Right Symmetric Model: SM-singlet heavy neutrinos N , a heavy neutral lepton (HNL), which are introduced as the parity gauge partners of the corresponding left-handed neutrino fields, and a right-handed gauge boson  $W_p$ .

$$\begin{array}{c} \ell_{\alpha}^{\pm} \\ \ell_{\beta}^{\pm} \\ N \\ \ell_{\beta}^{\pm} \\ \ell_{\alpha}^{\pm} \end{array}$$

#### *Eur. Phys. J.* C 77, 812 (2017) Updated search for long-lived particles decaying to jet pairs

10

 $10^{2}$ 

- Search for Higgs boson that decays to a pair of Hidden Valley (HV) pions  $\pi_{v}$ , that subsequently decay into bb pairs, full Run I dataset ( $\mathscr{L}$  ~2 fb<sup>-1</sup>)
- Signature: two jets associated to a displaced SV
- Fits of the dijet invariant mass distribution for several intervals of displacement from the beam axis  $\mathrm{R}_{_{_{XY}}} \rightarrow$  no signal eccess found
- 95% CL upper limits are set on  $\sigma(gg \rightarrow H_0) \times \mathcal{B}(H_0 \rightarrow \pi_v \pi_v)$
- Several masses  $m_{\pi v} \in [25,50]$  GeV/c<sup>2</sup> and lifetime  $T_{\pi v} \in [2,500]$  ps hypothesis are tested

 $10^{-3}$ 

 $10^{2}$ 

10

 $10^{-}$ 

10

 $\rightarrow \pi_{v}\pi_{v}$ )

 $[\sigma/\sigma^{SM}_{gg \to H^0}) \cdot \mathcal{B}(H^0$ 

LHCb results are compared with ATLAS/CMS

 $\pi_V$ 

 $\pi_V$ 

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

 $H^0$ 



#### LHCb-CONF-2018-006

### Projected sensitivities for LLPs decaying into dijet

• Projected sensitivities of the search for HV pions decaying hadronically



#### *Eur. Phys. J. C* 78, 1008 (2018) Search for lepton flavour-violating decays of Higgs-like bosons

- Search for Higgs-like boson  $H^0 \rightarrow \mu^{\pm} T^{\mp}$  with mass in the range 45 to 195 GeV/c<sup>2</sup>
- Run I data, 8 TeV (L=2 fb<sup>-1</sup>)
- Signature: prompt muon and displaced T decay
- T lepton is reconstructed in 4 different decay channels



- Limits on  $\sigma(gg \rightarrow H \rightarrow \mu T)$  are set with different mass hypothesis
- Upper limit on  $\sigma$ ·**3** at 95% C.L.
  - $\circ$  22 pb for mass 45 GeV/c<sup>2</sup>
  - $\circ$  4 pb for mass 195 GeV/c<sup>2</sup>
- For Higgs boson,

$$\sqrt{|Y_{\mu\tau}|^2 + |Y_{\tau\mu}|^2} < 1.7 \times 10^{-2}$$





• The search provides complementary results w.r.t. ATLAS and CMS