

Search for non-resonant Higgs boson pair production in the final state with two bottom quarks and two tau leptons with CMS

Higgs Hunting 2022

Valeria D'Amante on behalf of CMS Collaboration

13/09/2022

Sensitive to λ_{HHH} , \mathbf{y}_t , \mathbf{c}_V , \mathbf{c}_{2V} :

- Direct measurements of scalar sector properties
- Independent SM test
- \circ BSM effective models with anomalous couplings using strength modifiers $\kappa_{\lambda} \lambda_t \kappa_V$, κ_{2V}

Non-resonant HH production

Cross section at LHC $@\sqrt{s} = 13$ TeV $\sigma_{SM}(pp \to HH) \approx 31 \text{ fb}$ $\sigma_{SM}(pp \rightarrow qqHH) \approx 1.7 \text{ fb}$

Gluon-Gluon Fusion (ggF)

Vector Boson Fusion (VBF)

Very small cross section but distinctive signature:

2 forward jet highly separated in η with large invariant mass

13/09/2022

Valeria D'Amante

Non-resonant HH production

HC
$$@\sqrt{s} = 13$$
 TeV
 $(pp \rightarrow HH) \approx 31$ fb

The bbtt final state

bb\tau\tau channel has a medium BR and a relatively small background: \rightarrow good trade-off between BR and signal purity $\mathscr{B}(HH \to bb\tau\tau) \approx 7.3\%$

13/09/2022

Valeria D'Amante

Final states considered (channels): $\tau_{\rm h}\tau_{\rm e}$, $\tau_{\rm h}\tau_{\mu}$, $\tau_{\rm h}\tau_{\rm h}$ $\mathscr{B}(\tau\tau \to \tau_h \tau_{\{e,\mu,h\}}) \approx 88\%$

In the CMS detector the signal can be identified by looking for...

Missing energy in the transverse plane

HH $\rightarrow bb\tau\tau$ analysis at CMS

New features w.r.t. previous analysis:

- \circ Full Run 2 data: total integrated lumi 138 fb⁻¹ (collected in 2016, 2017 and 2018)
- VBF production included in the studies the (only ggF was considered in prev. analysis)
- Improved trigger strategy: single lepton, di- τ , lepton + τ , and new dedicated VBF di- τ triggers
- **Introduction of new Machine-Learning (ML) algorithms** to improve:
 - $\rightarrow \tau$ ID (<u>DeepTau</u>) and b-tagging (<u>DeepFlavour</u>) central tools developed in CMS
 - \rightarrow H \rightarrow bb candidate selection (HH-bTag)
 - → VBF Categorisation (Deep Neural Network DNN multiclassifier)
 - \rightarrow Signal extraction (DNN algorithm to discriminate SM HH signals from all backgrounds)
- Improved background modelling (data-driven corrections)

 $\overline{13/09/2022}$

Valeria D'Amante

Previous analysis: PLB 778 (2018) 101

This analysis (Submitted to PLB): <u>CMS-PAS-HIG-20-010</u>

Two OC leptons well identified and isolated: $e\tau_h$ OR $\mu\tau_h$ OR $\tau_h\tau_h$ Match to trigger objects and apply third lepton veto

$H \rightarrow bb$ and VBF jet selection

bb pair identified via the **HH-Btag** algorithm Select additional (VBF) jets with the highest m_{ii}

HH selection and event categorisation:

Elliptical mass cut on m(bb) VS m($\tau\tau$) Events divided in 8 categories (2 resolved, 1 boosted, 5 from VBF multi classifier)

Limits and likelihood scan

Inclusion of all relevant experimental and theory uncertainties Signal extraction using **DNN score** distributions for each year/channel/category

Valeria D'Amante

Analysis workflow

Trigger Requirements

 $H \rightarrow \tau \tau$ decay products + dedicated VBF triggers

$H \rightarrow \tau \tau$ selection

Higgs Hunting 2022

Event Categorisation

(*) Event selected by only VBF di-tau trigger, further requirements: $m_{jj} > 800 \text{ GeV}$, $p_T > 140(60) \text{ GeV}$ for the (sub)leading jet

13/09/2022

Valeria D'Amante

Background estimation

Main processes that mimic the signal final state

- **QCD** multi-jets
 - \rightarrow Yield and Shape: data-driven estimation via the **ABCD** method
- \bigcirc **Drell-Yan events** (*Z* → $\ell\ell\ell$ + jets)
 - \rightarrow Shape: MC simulation
 - \rightarrow Yield: data-driven estimation in $Z \rightarrow \mu\mu$ enriched sample
- ∮ Top-antitop production $(t\bar{t} \to b\bar{b}W^+W^- \to b\bar{b}\ell\nu_{\ell}\tau\nu_{\tau})$
 - \rightarrow Shape: MC Simulation
 - \rightarrow Yield: SFs per year fitted from a $t\bar{t}$ enriched CR and validated in a $t\bar{t}$ enriched subset of the SR
- Minor backgrounds: SM single Higgs, Di-Boson, Tri-Boson, other
 - processes (W+Jets, Single Top, ttW, ttZ..)
 - \rightarrow Yield and Shape: MC Simulation

13/09/2022

Valeria D'Amante

Higgs Hunting 2022

Dedicated Deep Neural Network (DNN) trained to separate SM non-resonant HH signal vs all backgrounds

Binned DNN score distribution as final discrimination for signal extraction in all analysis categories

13/09/2022

Valeria D'Amante

Signal extraction

Systematic uncertainties

• Theory uncertainty on ggF HH cross section: $\sigma_{SM}(pp \to HH) = 31.05^{+6\%}_{-23\%} (scale+m_t) \pm 3\% (PDF + \alpha_S) \text{ fb}$ • Uncertainties on mis-modelling of jet and tau ID and reconstruction in simulation

Total effect of systematic uncertainties on final limits is $\sim 15\%$

Valeria D'Amante

13/09/2022

- Main sources of systematic uncertainties
- Statistical fluctuations affecting multi-jet background estimation

Higgs Hunting 2022

 $-3.0 \le \kappa_{2V} \le 9.9$ Expected

Valeria D'Amante

95% CL constraint on $\sigma(pp \to HH) \equiv \sigma^{HH}$ Observed $\sigma^{HH} \leq 3.3 \times \sigma_{SM}^{HH}$ Expected $\sigma^{HH} \leq 5.2 \times \sigma_{SM}^{HH}$

 $5 \times \text{improvement}$ with respect to the 95%CL limits set by the previous CMS analysis (<u>PLB 778 (2018) 101</u>) with 2016 data corresponding to a luminosity of $35.9 \,\mathrm{fb}^{-1}$ σ^{HH} obs (exp) $\leq 30(25) \times \sigma_{SM}^{HH}$

Limits on $\sigma(pp \rightarrow HH)$

VBF HH cross section limits

VBF analysis main features

13/09/2022

Valeria D'Amante

Conclusions and final remarks

- has been presented
- Thanks to the <u>improvements</u> w.r.t. the previous analysis, it has been possible to achieving particularly stringent results on the HH production cross sections
- The most stringent 95% limit at CMS has been set to σ^{VBF}
- The results are compatible with the ones achieved by the ATLAS experiment (<u>ATLAS-CONF-2021-052</u>)

This analysis has been included in the **Double Higgs** combination for the Nature paper about 10 years since Higgs discovery

13/09/2022

Valeria D'Amante

In this talk the non-resonant HH \rightarrow bb $\tau\tau$ analysis with full Run 2 data collected by the CMS experiment

Higgs Hunting 2022

Thank you for the attention

The CMS experiment

Useful definitions:

13/09/2022

- Pseudo-rapidity $\eta = -\ln(\tan(\frac{\theta}{2}))$ for HR particles it coincides with the rapidity

Valeria D'Amante

General purpose detector, "onion" structure

Higgs Hunting 2022

PRESHOWER ilicon strips (6cm x 2mm) ~16m² ~137k channels

FORWARD CALORIMETER Steel + quartz fibres

 $H \rightarrow \tau \tau$

General:

 $p_T^{offline} > p_T^{fired path} + X$, $|\eta| < 2.3$ X= 1,1,5 GeV for e,μ,τ

Electrons:

 $p_T > 25 \div 33 \, GeV, |\eta| < 2.1, d_{xv} < 0.045 \, cm, d_z < 0.2 \, cm,$ Tight MVA iso ID

Muons:

 $p_T > 20 \div 25 \ GeV, \ |\eta| < 2.1, \ d_{xv} < 0.045 \ cm, \ d_z < 0.2 \ cm,$ $I_{rol}^{PF} < 0.15$, Tight ID

Taus:

 $p_T > 20 \div 40 \, GeV, |\eta| < 2.1 \div 2.3, d_z < 0.2 \, cm$, DeepTau thresholds depending on channel)

Pair Assessment:

 \bigcirc Method used also in the H77 analysis, $\Delta R(\tau_i,\tau_i)>0.5,$ OS and third lepton Veto

Baseline selection

$H \rightarrow bb$

$AK-4 Jets^1$:

- \circ b-jet selection: $p_T > 20 \, GeV$, $|\eta| < 2.4$
- VBF jets: $p_T > 30 \, GeV$, $|\eta| < 4.7$
- \odot VBF and b-jets: Tight PFJet ID, $\Delta R(\tau, \text{jet}) > 0.5$ + Loose PU ID if $p_T < 50 \, GeV$

AK-8 Jets¹:

 $\circ m_{softdrop} > 30 \, GeV$

Pair Assessment:

- **9 HH-bTag**: NN-based algorithm fed with properties of all potential b jet candidates (including kinematic variables and DeepJet score), training and test with all available resonant and non-resonant Run2 samples
- the two b jet candidates with highest HH-btag score are selected

The $H \rightarrow bb$ candidate selection

- Jets coming from a b-quark hadronization process (**b-jets**) are tagged using **DeepJet** algorithm, which exploits a recurrent neural network (RNN) to tag jet flavours <u>JINST 15 (2020) P12012</u>
- To improve the $H \rightarrow bb$ selection the HH-btag algorithm has been defined
 - \rightarrow Based on a RNN
 - \rightarrow Inputs
 - b-jet candidates kinematic observables
 - DeepJet score
 - Angular separation between b-jet candidates and the $H \rightarrow \tau \tau$ candidate
- Algorithmic efficiency for $H \rightarrow bb$ tagging $\approx 95\%$
- \circ m(bb) resolution improved by ~ 25 %

13/09/2022

Valeria D'Amante

For each event, all possible b-jet candidates are assigned a **HH-btag** score The two jets with the highest scores are taken to build the $H \rightarrow bb$ candidate

Elliptical cut requirement on m_{bb} VS $m_{\tau\tau}$ expected values

- Remove significantly outlying background events where no signal is expected
- \rightarrow Discrimination of HH events from the background left to a specifically designed neural network (see next slides) Provide additional control regions (by inverting mass cut)
- No invariant mass requirement for VBF categories

Parameters are defined by minimising background acceptance keeping signal efficiency above 90%

HH Candidates selection

Resolved categories	$\frac{(m_{\tau\tau} - 129 \text{GeV})^2}{(53 \text{GeV})^2}$	$+\frac{(m_{bb}-169{ m GeV})^2}{(145{ m GeV})^2}$
Boosted categories	$\frac{(m_{\tau\tau} - 128 \text{GeV})^2}{(60 \text{GeV})^2}$	$+\frac{(m_{bb}-159{ m GeV})^2}{(145{ m GeV})^2}$

ggF signal extraction

Dedicated Deep Neural Network (DNN) trained to separate SM non-resonant HH signal vs all backgrounds

- All channels and categories are considered in the training together
- \circ Input features selected from a starting pool of > 100 features

Input Features				
Continuous	Categorical			
b-tag score of 1^{st} b-jet	Event is <i>boosted</i> or not			
m_{HH} kinematic fit	Presence of VBF-candidates			
χ^2 kinematic fit	au au decay mode			
$m_{ au au}^{SVfit}$	Highest b-tag WP of 1^{st} b-jet			
$\Delta R(au, au) \cdot p_T(H_{ au au}^{SVfit})$	Highest b-tag WP of 2^{nd} b-jet			
$\Delta R(au, au)$	Year			
m_T and p_T of both taus	Pos			
$\Delta \phi(H^{SVfit}_{ au au},MET)$				
m_{bb}				
$\Delta \phi(H_{ au au}^{SVfit},H_{bb})$				
$p_T(H_{bb})$				

Binned DNN score distribution as final discrimination for signal extraction in all analysis categories

13/09/2022

Valeria D'Amante

Higgs Hunting 2022

Dedicated Deep Neural Network (DNN) trained to separate SM non-resonant HH signal vs all backgrounds

- All channels and categories are considered in the training together
- \circ Input features selected from a starting pool of > 100 features

Input Features				
Continuous	Categorical			
b-tag score of 1^{st} b-jet	Event is <i>boosted</i> or not			
m_{HH} kinematic fit	Presence of VBF-candidates			
χ^2 kinematic fit	au au decay mode			
$m_{ au au}^{SVfit}$	Highest b-tag WP of 1^{st} b-jet			
$\Delta R(au, au) \cdot p_T(H_{ au au}^{SVfit})$	Highest b-tag WP of 2^{nd} b-jet			
$\Delta R(au, au)$	Year			
m_T and p_T of both taus	Pos			
$\Delta \phi(H^{SVfit}_{ au au},MET)$				
m_{bb}				
$\Delta \phi(H_{ au au}^{SVfit},H_{bb})$				
$p_T(H_{bb})$				

Binned DNN score distribution as final discrimination for signal extraction in all analysis categories

13/09/2022

Valeria D'Amante

2D exclusion region in κ_{λ} and κ_{t}

13/09/2022

Valeria D'Amante

Exclusion regions

2D exclusion region in κ_V and κ_{2V}

13 TeV)
ed)

- 0.5 pt
-
·····
] 6
κ _{2V}

Observed likelihood scan as a function of κ_{λ}

Likelihood scans

Observed likelihood scan as a function of κ_{2V}

Normalisation uncertainties

Pile-Up reweighing $(\sim 1\%)$ inefficiency in vertex reconstruction; up-down variation of PU weights.

L1 Ecal prefiring $(\sim 2\%)$ in 2016 and 2017 samples, ECAL time shift not propagated to the L1Trigger primitives. Not described in MC simulation. Uncertainty estimated via a tool provided by the BTV POG.

Luminosity

Prodvided by the Lumi POG, study of detector stability during data taking. It's applied to processes that rely ONLY on MC samples. Its value depends on year - sample.

Cross sections (W+Jets, ST, SH, di- and tri-boson) Due to imperfect knowledge of process normalisations/simulation

ttSF

The uncertainty is retrieved from the error coming with the maximum likelihood fit result in a CR and varies for each year. All values are < 1%

Branching Fractions error on $H \to bb :^{+1.25\%}_{1.27\%}$ error on $H \rightarrow \tau \tau : \pm 1.65 \%$

Theoretical Cross section Included when evaluating the limit in the SM scenario.

error on $\sigma(GGF)$:^{+2.2%}_{5%} (scale), ± 3% (PDF + α_s) ± 2.6% (m_{top}) error on $\sigma(VBF)$: $^{+0.03\%}_{0.04\%}$ (scale), $\pm 2.1\%$ (PDF + α_s)

13/09/2022

Valeria D'Amante

DY estimation 18 uncertainties from the fit for DY estimation

QCD Normalization

On the correction factor adopted in the ABCD method to estimate the QCD Yield in signal region.

VBF dipole recoil

Due to imperfect modelling of third leading jet distribution in VBF samples. It's computed for each category, channel, year and the most conservative value is chosen.

Ele and Mu scale factors ($\sim 1\%$) Data/MC disagreements in ID and reco. Scale factor and uncertainties provided by the $H\tau\tau$ group.

Shape uncertainties

		Lau	
Pile-Up Jet ID		Uncert	
Differences on Data/MC PUJetID discriminator		distribu	
behaviour: scale factor parametrised in η and p_T and		the T-P	
related uncertainty templates.		change	
Provided by JET-MET POG.		Ι	
Changes the overall weight of the event.			
Trigger Scale Factors		De	
Differences in Data/MC trigger efficiencies.		Uncertaint	
Uncertainties affect the overall weight of the		factors for di	

event.

4 different uncertainties according to the decay mode of taus + other uncertainties applied for muTau and eTau channels + another uncertainty for VBF

ties related to scale factors for different discriminators (VSJet, VSEle, VSMu) due to different behaviour in Data/MC. All uncertainties provided by TAU-POG

B-tag

Uncertainties on b-tagging performances, accounting heavy/light jet flavour regions, contaminations, statistical fluctuation on MC samples. Different types: HF; LF; CFErr1,2; HFStat1,2; LFStat1,2.

Fully hadronic sample custom SF The $\tau_h \tau h$ 2017 distributions are in huge disagreement with data, mainly due to the DY contribution: a custom SF has been evaluated in the analysis and its uncertainty that change the event weight.

13/09/2022

Valeria D'Amante

Energy Scale tainty on τ energy ations, provided by OG. This induce a of distribution in DNN scores.

eepTau ID

Jet Faking taus

Uncertainty in events where jets are misidentified as hadronic taus: dedicated CR definition, estimation separately for Barrel and EndCap.

> *Yield*(*data*) – *Yield*(*bkg*) $\delta_{jet-faking-tau} =$ *Yield*(*data*)

Jet Energy Reconstruction (JER) Energy resolution in data worse than in MC: correction factor to be applied with up/down variation, provided by the JET-MET POG.

> DY shape uncertainty Obtained by summing in quadrature templates obtained by scaling the nominal contribution in different CRs.

Jet Energy Scale DProvided by JET-MET POG, 14 uncertainties to account for: PU contribution, non linearity detector response, residual data/MC difference

QCD shape uncertainty Due to the region chosen for the shape estimation in SR

Limited size of MC simulations

Method proposed by Barlow and Beeston [1]

- Introduction of a nuisance parameter (NP) multiplying the expected yield in each bin from each MC simulated sample • The nominal value of such parameters is 1 and they are left floating with some prior distribution (e.g. Pois, Gaus, Binom) \circ Introduction of massive number of nuisances: set of non lin equations in $ln(\mathcal{L})$ (NLL) minimisation
- Practical purpose: ROOT minimiser (MINUIT MINGRAD) has technical problems in finding the numerical approximation of the values that minimise the NLL, so they are factorised in only 1 NP for each bin

$$\begin{aligned} & \text{Contribution to NLL in each bin} \\ & -ln(\mathscr{L}(\mu,\beta)) = -n_{obs}ln(\beta \cdot (\mu s + b)) + \beta \cdot (\mu s + b) + \frac{(\beta - 1)^2}{2 \cdot \sigma_{\beta}^2} \\ & \text{When minimising NLL (with other NP fixed)} \\ & \frac{\partial(-ln(\mathscr{L}))}{\partial\beta} = 0 \implies \beta^2 + ((\mu s + b) \cdot \sigma_{\beta}^2 - 1) \cdot \beta - n_{obs}\sigma_{\beta}^2 = 0 \end{aligned}$$

$$\begin{aligned} & -\ln(\mathscr{L}(\mu,\beta)) = -n_{obs}ln(\beta \cdot (\mu s + b)) + \beta \cdot (\mu s + b) + \frac{(\beta - 1)^2}{2 \cdot \sigma_{\beta}^2} \\ & \text{When minimising NLL (with other NP fixed)} \\ & \frac{\partial(-ln(\mathscr{L}))}{\partial\beta} = 0 \implies \beta^2 + ((\mu s + b) \cdot \sigma_{\beta}^2 - 1) \cdot \beta - n_{obs}\sigma_{\beta}^2 = 0 \end{aligned}$$

[1] R. Barlow and C. Beeston, Comp. Phys. Comm. 77 (1993) 219.

13/09/2022

Valeria D'Amante

Systematic uncertainties

Residual differences between data and MC simulation due to uncertainties on

- Theoretical predictions
- Unforeseen detector responses
- Limited size of MC samples
- data-driven methods
- Scale factors due to data-MC differences
- Different data-MC behaviour in tagging algorithms

Normalisation uncertainties

Affecting only the yield of a given process

Main sources of systematic uncertainties

- Statistical fluctuations affecting multi-jet background estimation
- Uncertainties on mis-modelling of jet and tau ID and reconstruction in simulation

Total effect of systematic uncertainties on final limits is $\sim 15\%$

13/09/2022

Valeria D'Amante

• Theory uncertainty on ggF HH cross section: $\sigma_{SM}(pp \rightarrow HH) = 31.05^{+6\%}_{-23\%}$ (scale+m_t) ± 3 % (PDF + α_{S}) fb

Higgs Hunting 2022

