Additional Scalar Bosons CMS

Higgs Hunting 2022 2022.9.13

> Yiwen Wen¹ On behalf of the CMS Collaboration

¹ Deutsches Elektronen-Synchrotron (DESY)

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Introduction

Higgs sector in Beyond Standard Model

- Higgs sector is extended in many BSM models
- Minimal extension is known as the Two-Higgs-Doublet Model (2HDM). Key parameters:
 - Mass values of five predicted Higgs bosons: H, h, A, H⁺ and H⁻
 - α: mixing angle which diagonalises the neutral scalar mass matrix;
 - tanβ: the ratio of vacuum expectation values of the two Higgs doublets
- Other extensions predict extra scalars: MSSM (Type-II 2HDM), NMSSM, TRSM ...
- Recent searches for additional scalars in CMS using full Run 2 dataset with 138 fb⁻¹ integrated luminosity

Model	Channel	Reference
2HDM	$H^+ \rightarrow H W^+$	arXiv:2207.01046
MSSM	$\phi \to \tau \tau$	arXiv:2208.02717
2HDM/MSSM	Heavy $H \rightarrow W^+W^-$	CMS-PAS-HIG-20-016
NMSSM + TRSM	$X \rightarrow YH \rightarrow bb\gamma\gamma$	CMS-PAS-HIG-21-011
	$X \to YH \to bbbb$	arXiv:2204.12413
Singlet scalar	V ϕ , tt ϕ , $\phi \rightarrow II/\tau\tau$	CMS-PAS-EXO-21-018

Di-Higgs: see Marcel's talk BSM decays: see Maxime's talk

2HDM: $H^+ \rightarrow H W^+$

arXiv:2207.01046

- Search for heavy mass region of H⁺: 300-700 GeV
- Dominant mode of H⁺: **Produced with a top quark and a b-quark**
- Consider four final states of Heavy Higgs H and W: e_{τ_h} , μ_{τ_h} , $e_{\tau_h\tau_h}$ and $\mu_{\tau_h\tau_h}$

- NN-based resolved top tagger to tag top quark jet: 90% efficiency vs. 10% of misidentification rate
- Dominant backgrounds: Jet misidentified as hadronic tau, ttX (X = W, Z and h)
- **BDT score** $(e\tau_h, \mu\tau_h)$ and transverse mass $(e\tau_h\tau_h, \mu\tau_h\tau_h)$ as signal discriminants

arXiv:2208.02717

- Targeting ggo and bbo production for low-mass (60 250 GeV) search and high-mass (250 3500 GeV) search
- Four final states of $\phi \rightarrow \tau \tau$: eµ, eth, µth and thth
- p_T of $\tau\tau$ system, D_{ζ} and transverse mass of light lepton to categorise events
- Use of number of b-tagged jets in an event to target different production modes
- Data-driven estimation ~ 95% of the backgrounds: τ -embedded for genuine $\tau\tau$, fake factor method for jet $\rightarrow \tau$
- Signal discriminants: a kinematic fit built mass $M_{\tau\tau}$ for low-mass search, and total transverse mass for highmass search $\tau_{\tau_{\tau_{\tau}}, No b tag, p_{\tau}^{\tau_{\tau}} > 200 \text{ GeV}} = \frac{\tau_{\tau_{\tau_{\tau}}, No b tag}}{138 \text{ fb}^{-1}(13 \text{ TeV})} = \frac{\tau_{\tau_{\tau_{\tau}}, No b tag}}{\tau_{\tau_{\tau_{\tau}}, No b tag}} = \frac{138 \text{ fb}^{-1}(13 \text{ TeV})}{138 \text{ fb}^{-1}(13 \text{ TeV})}$

arXiv:2208.02717

- **Model independent limits**: GG¢ and bb¢, for low-mass and high-mass •
- Model dependent limit for MSSM M_h¹²⁵ and M_{hEFT}¹²⁵ scenarios •
- Conclusions: •
 - Two excesses for $gg\phi$ production with local significance ~ 3σ at 0.1 and 1.2 TeV ٠
 - Additional Higgs bosons in MSSM benchmarks are excluded at 95% CL for • masses below 350 GeV

CMS-PAS-HIG-20-016

- Search for heavy Higgs in ggH and VBF H production modes from 150 -5000 GeV
- $H \rightarrow WW \rightarrow e\mu$, $\mu\mu$ and ee fully leptonic final states
- Dominant backgrounds:
 - Top and DY. Estimated from MC and controlled by data
 - **SM WW processes**. Estimated from MC
 - Jet misidentified as lepton. Estimated from data-driven
- Use DNN to classify ggH, VBF H signals and the background events
- Signal discriminant: a DNN trained transverse mass
 - Use input variables that have impact on mass hypotheses
 - The output layer has a single node and uses a linear activation function

CMS-PAS-HIG-20-016

- Results are shown for different f_{VBF}, a ratio of ggF to VBF contribution, as well as 2HDM and MSSM benchmark scenarios
- Conclusions:
 - Highest excess: 3.8 local significance at 650 GeV for f_{VBF} = 1, i.e., assuming only VBF production mode
 - Presence of heavy Higgs excluded up to
 - 2.1 TeV assuming SM-like VBF contribution and also assuming only VBF contribution
 - **900 GeV** assuming only ggF contribution and also assuming f_{VBF} freely floating in the fit

NMSSM, TRSM: $X \rightarrow YH \rightarrow bb\gamma\gamma$ CMS-PAS-HIG-21-011

- NMSSM: MSSM extended by one more complex singlet. TRSM: SM extended by two real singlet fields. •
- Heavy Higgs can decay to a lighter Higgs and SM H •
- **BDT** (NN) score is used to separate signals and non-resonant (resonant) backgrounds •
- Six BDT training accounts for different m_X-m_Y mass differences; Categorise events based on BDT score •
- A parametric fit in the (m_{yy}, m_{jj}) plane is used for signal extraction for each category •

Conclusions:

The largest deviation from SM with local significance of 3.8σ found for $(m_X, m_Y) =$ (650,90) GeV

NMSSM, TRSM: X \rightarrow YH \rightarrow bbbb

arXiv:2204.12413

- Search in 0.9 4 TeV for X scalar and 60 600 GeV for Y scalar
- Both Y and SM H are boosted: bb pair is highly collimated
- Use particle-net (GNN-based algorithm) scores for H and Y jets to define SR
- Main backgrounds:
 - Top pair (correction from jet+lepton CR), and QCD multi-jets (transfer factors from CRs)
- 2D distribution $M^{\gamma}{}_{\rm J}$ and M_{jj} for signal extraction

Conclusions:

- The largest deviation from SM with local (global) significance of 3.1 (0.7) σ found for (m_X,m_Y) = (1600 ,90) GeV
- NMSSM and TRSM results provided

Additional Singlet: Vφ, ttφ, φ in leptonic decay channels CMS-PAS-EXO-21-018

- BSM scalar and pseudoscalar that decay into pairs of electrons, muons, or tau leptons. Total 37 mass spectra
- Low and high φ mass searches for production modes: Zφ, Wφ and ttφ
- Dominant backgrounds:
 - Irreducible, i.e., genuine leptons: di-boson, SM Higgs..., estimated by MC
 - Reducible, i.e., jet misidentified leptons, estimated by data-driven fake rate method
- Signal discriminants: M_{Max} (M_{Min}) of di-lepton for high (low) mass search

Additional Singlet: Vφ, ttφ, φ in leptonic decay channels CMS-PAS-EXO-21-018

• Selective exclusion limits plots. In total, produced limits for 24 X signal models

- Conclusions:
 - No significant excess has been found
 - Highest excess: 2.9 (1.4) local (global) σ significance at 156 GeV in Z ϕ (ee)

Summary

Additional scalar boson searches in CMS

- Presented lots of interesting recent searches for additional scalar boson in CMS
- New techniques included with full 138 fb⁻¹ Run 2 dataset
 - Deep Machine Learning, Particle Net...
- Covered more channels and more parameter space
- Small data excess observed but no strong deviation from SM
- Many more searches are in pipeline, and more results will be soon available
 - e.g., analysis of high resonance → VH decay (PRD 105 (2022) 032008, CMS-PAS-B2G-20-009) can be interpreted in models with additional scalars in the future
- Run 3 has just started and to deliver > 150 fb⁻¹!

Stay tuned...

Thank you.

Extra contents

Navigations

- More CMS recent searches used full Run 2 dataset
 - CMS Charged Higgs search: $H^+ \rightarrow W^+Z$ and $H^{++} \rightarrow W^+W^+$, Eur. Phys. J. C 81 (2021) 723, on Page 15
 - CMS search: $H \rightarrow h_s h(125) \rightarrow bb\tau\tau$, JHEP 11 (2021) 057, on Page 17
- Additional materials for:
 - 2HDM: $H^+ \rightarrow H W^+$, arXiv:2207.01046, on Page 19
 - MSSM: $\phi(h, H, A) \rightarrow \tau\tau$, arXiv:2208.02717, on Page 21
 - 2HDM/MSSM: Heavy H \rightarrow WW, CMS-PAS-HIG-20-016, on Page 24
 - NMSSM, TRSM: $X \rightarrow Y(H)H \rightarrow bb\gamma\gamma$, CMS-PAS-HIG-21-011, on Page 28
 - NMSSM, TRSM: $X \rightarrow YH \rightarrow bbbb$, arXiv:2204.12413 , on Page 32
 - Additional Singlet: Vφ, ttφ, φ in leptonic decay channels, CMS-PAS-EXO-21-018, on Page 33
- Constraints from LHC and CMS 2016 Higgs boson measurements: on Page 36

CMS Charged Higgs search: $\rm H^{+} \rightarrow W^{+}Z$ and $\rm H^{++} \rightarrow W^{+}W^{+}$

Eur. Phys. J. C 81 (2021) 723

- Higgs triplet model extend the sector by addition of scalar triplet
- Georgi-Machacek (GM) model adds one real & one complex SU(2) triplet
- Appearance of the H+W+Z coupling at tree-level and presence of doubly-charged Higgs bosons H+

- Multi-lepton + jets + missing transverse energy final state
- Backgrounds:
 - Irreducible: SM di-boson (CR validated) and tZq (from MC)
 - Reducible: Misidentified lepton, estimated from data-driven in CR

CMS Charged Higgs search: $H^+ \rightarrow W^+Z$ and $H^{++} \rightarrow W^+W^+$

Eur. Phys. J. C 81 (2021) 723

- Using 2D distributions of M_{jj} and transverse mass M^{VV_T} to extract signals
- Excluded $s_H > 0.20-0.35$ for $mH_5 = 0.2-1.5$ TeV in GM model
- Improved limits w.r.t previous CMS results
- Theoretically inaccessible ($\Gamma_{H5} > 0.1 \text{mH}_5$)

CMS search: $H \rightarrow h_sh(125) \rightarrow bb\tau\tau$

JHEP 11 (2021) 057

- In NMSSM model, H is a heavy Higgs, h is the SM Higgs, and h_{s} another additional Higgs
- Three decay channels of ττ: eτ_h, μτ_h and τ_hτ_h and require ≥ 2 jets and ≥ 1 b-jet
- Dominant backgrounds:
 - Genuine tau pairs, estimated from $\boldsymbol{\tau}$ embedding technique
 - Misidentified τ_{h} : fake factor method, data-driven
 - 94% of background events estimated from data
- Each NN has 5 scores as outputs: tau pairs, top pair, jet $\rightarrow \tau_h,$ misc., and signal
 - Use NN score in signal category as signal discriminant:
 - 1 NN trained for similar mass hypothesis ~ total 68 training

CMS search: $H \rightarrow h_sh(125) \rightarrow bb\tau\tau$

JHEP 11 (2021) 057

- limits are derived as a function of $m_{\rm H}$ and $m_{\rm hs}$
- All upper limits shown in a single figure by scaling values by orders of 10
- Upper limits of 125 2.7 fb for m_H = 240 1000 GeV (m_{hs} = 85–250 GeV)
- NMSSM constrained for $400 \leq m_{H} \lesssim 600~GeV$ and $60 \leq m_{hs} \leq 200~GeV$

2HDM: $H^+ \rightarrow H W^+$

Additional materials

- Top tagger efficiencies for Loose working point
 - ~27% misidentification rate and 95% efficiency for plateau pT > 350 GeV
- BDT input variables for $e\tau_h$, $\mu\tau_h$ channels

2HDM: $H^+ \rightarrow H W^+$

Additional materials

• BDT scores for $e\tau_h$, $\mu\tau_h$ channels and transverse mass distribution for $e\tau_h\tau_h$ channel

Additional materials

- τ embedding technique: Create hybrid event with minimum simulation needed
 - Select $Z \rightarrow \mu \mu$ events in observed data
 - Clean all µ-related energy deposits
 - Simulate $\tau \tau$ events with same kinematic properties as muons
 - Merged $\mu\text{-removed}~Z \to \mu\mu$ with simulated $Z \to \tau\tau$ to get hybrid event

Additional materials

• Event categories building to target different kinematics

Additional materials

• Composition of signals for MSSM benchmark mh₁₂₅

 2D Likelihood scans for bb
and gg
cross section. SM expectation is (0,0)

23

Additional materials

 Exclusion Limits for 4 VBF relative contribution scenarios

Additional materials

f_{VBF} = 0:

f_{VBF} = 1:

 Exclusion Limits signal mass and width for 4 VBF relative contribution scenarios

Floatting f_{VBF}:

SM-like f_{VBF}:

600 1000

300

2000

5000 m_H [GeV] 300

600 1000

2000

5000 m_H [GeV]

Additional materials

- Exclusion Limits different MSSM benchmark scenarios
- And 2HDM Type-I and Type-II

DESY. | Additional Scalar Bosons | Yiwen Wen

Additional materials

• Exclusion limits in 2HDM Type-I and Type-II parameter space for different mass points

NMSSM, TRSM: $X \rightarrow YH \rightarrow bb\gamma\gamma$

Additional materials

• m_{yy} distributions

NMSSM, TRSM: $X \rightarrow YH \rightarrow bb\gamma\gamma$

Additional materials

• m_{jj} distributions

NMSSM, TRSM: $X \rightarrow HH \rightarrow bb\gamma\gamma$

Additional materials

Limits

NMSSM, TRSM: $X \rightarrow YH \rightarrow bb\gamma\gamma$

Additional materials

• Expected NMSSM and TRSM limits

NMSSM, TRSM: $X \rightarrow YH \rightarrow bbbb$

Additional materials

ParticleNet categorization

Pagion name (label)	ParticleNet discriminator	
Region name (label)	H jet	Yjet
Signal region 1 (SR1)	>0.98	>0.98
Signal region 2 (SR2)	>0.94	>0.94
(excludes SR1)		
Sideband 1 (SB1)	>0.98	< 0.94
Sideband 2 (SB2)	>0.94	< 0.94
Validation signal-like 1 (VS1)		>0.98
Validation signal-like 2 (VS2)	0.8–0.94	0.94-0.98
Validation sideband 1 (VB1)		< 0.94
Validation signal-like 3 (VS3)		>0.98
Validation signal-like 4 (VS4)	0.6-0.8	0.94-0.98
Validation sideband 2 (VB2)		< 0.94

Additional Singlet: Vo, tto

Additional materials

• Z¢ limits

Additional Singlet: Vo, tto

Additional materials

• W¢ limits

Additional Singlet: Vo, tto

Additional materials

• ttø limits

2HDM Additional materials

• Constraints, LHC Run 2 2016 data

5

2HDM Additional materials

Constraints, LHC CMS Run 2 2016 data ٠

0.8

0.6

 $\cos(\beta - \alpha)$