

BSM and rare H₁₂₅ decays at CMS 125

Maxime Gouzevitch on behalf of the CMS collaboration

Introduction

- 1) Motivation for the searches
- 2) LFV decays
- 3) Decay to light pseudo-scalars: $H_{125} \rightarrow AA \rightarrow 4\gamma$
- 4) $H_{125} \rightarrow Z\gamma$

Not covered: $H_{125} \rightarrow ZJ/\psi$, $H_{125} \rightarrow long$ lived

1) Theoretical motivation for $H_{125} \rightarrow BSM$ decays

- Most of the extensions of the Higgs sector compatible with data predicts the existence of multiple scalars mixing together. Obtaining:
 - 1 boson "SM-like" denoted H₁₂₅:
 - Couplings to W, Z, t, b, μ are constrained by LHC measurements.
 - Couplings to $B_{BSM} \rightarrow \text{this talk}$
 - Additional BSM Higgs bosons \rightarrow Y. Wen talk.

1) Experimental motivation for $H_{125} \rightarrow BSM$ decays 138 fb⁻¹ (13 TeV) Observed ±1 SD (stat) = ± 1 SD (stat \oplus syst) ±1 SD (syst) - ±2 SDs (stat ⊕ syst) Assuming a constraint on k_7 and k_w it is Stat Syst κ. 1.01±0.10 ±0.07 ±0.07 possible to constraint $1.00_{-0.06} \quad {}_{-0.04} \quad {}_{-0.04}$ $\kappa_{W'}$ $1.00_{-0.03}$ __0.03 __0.01 κ₇ B_{BSM}, B_{Inv} <~ 6% at 68% CL $0.90^{+0.10}_{-0.12}$ +0.07 -0.09 κ_h +0.06κτ 0.91±0.07 ±0.04 -0.05 \mathbf{B}_{inv} is constrained by looking on large ME_T **1.11**^{+0.19}^{+0.18}_{-0.21}^{+0.18} κμ ±0.07 events. Discussed in a separate talk. $\kappa_{Z\gamma'}$ $1.62^{+0.32}_{-0.36}$ +0.12 +0.29 **B**_{BSM} is this talk. +0.06κ_a 0.93 ± 0.07 ±0.05 -0.05 1.07+0.05 K. -0.05 -0.03B_{Inv} 0.07±0.05 ±0.02 ±0.04 $B_{\mathsf{Unde}^{\dagger}}$ 0.00+0.06

1.5

2

2.5

3

Parameter value

0.5

+0.05 +0.03

3.5

2) LFV decays: basics

- There is no fundamental symmetry that would enforce LF conservation. For quarks there is a violation.

 $Y_{ij} = (m_i/v)\delta_{ij}$

 $Y_{ij} \neq (m_i/v)\delta_{ij}$

- General Framework: $\mathcal{L}_Y = -m_i \bar{f}_L^i f_R^i Y_{ij} (\bar{f}_L^i f_R^j) h + h.c. + \cdots$
 - SM lepton sector:
- BSM: it is possible to have

For example in linear EFT with D6 operator

$$Y_{ij} = \frac{m_i}{v}\delta_{ij} + \frac{v^2}{\sqrt{2}\Lambda^2}\hat{\lambda}_{ij}$$

- Most stringent experimental constraint $\sqrt{|Y_{\mu e}|^2 + |Y_{e\mu}|^2} < 3.6 \times 10^{-6}$ from $\mu \rightarrow e\gamma$ (see <u>JHEP03(2013)026</u> for more details).
- $Y_{\mu\tau}$ and $Y_{e\tau}$ much less constrained.

2) Search for $H_{125} \rightarrow T\mu / Te$

- $H_{125} \rightarrow et/\mu t$ similar to $H \rightarrow tt$ search $(H \rightarrow t_e t/t_\mu t)$
- Same production processes: ggH and VBF H.
- Second decaying leptonically or hadronically τ_h

Differences:

- In average e/μ more prompt than τ_e/τ_μ
- Less MET and MET aligned with T
- Assume Higgs boson mass to be 125.
- Main backgrounds:
 Z→TT, t t, W + jets, H₁₂₅→TT
- Using BDT to separate S from B. Example: very sensitive channel

b

2) LFV decays

PhysRevD.104.032013

 $\mathcal{B}(H
ightarrow e au) < 0.22\%$ $\mathcal{B}(H
ightarrow \mu au) < 0.15\%$

- Yukawa coupling constrained below typically 10⁻³.
- This constraint is more stringent than indirect ones with $\tau \rightarrow 3\mu/\mu\gamma$.

3) H \rightarrow AA \rightarrow 4 γ

- A can be typically an axion-like particle (ALP) or a light pseudo-scalar boson.

- Interesting connections to cosmology: connected to universe formation, dark matter etc... Searched for in cosmic rays.

<mark>0.1 < M_A < 1.2 GeV</mark>	<mark>1.2 < M_A < 15 Ge</mark>	eV 15 < M _A < 60 GeV
 Typically ALP, with forbidden decay to heavy fermions A → ff A boosted and γγ is part of the same super-cluster (ΔR ~ Moliere radius). 	NO 4γ ANALYSIS but 2τ2μ can be used	 Typically light fermiophobic boson 4 well resolved photons.
CMS-PAS-HIG-21-016		<u>arXiv:2208.01469. Sub. to JHEP.</u>

JHEPU0(2020)139

CMS-PAS-HIG-21-016

3) $H \rightarrow AA \rightarrow 4 \gamma$: boosted

- Analysis and selections similar to $H \rightarrow \gamma \gamma$ search. Except:

Γ≡A candidate

- \rightarrow M_{vv} constraint is used.
- \rightarrow Only barrel photons used to reduce tracker material effects.

 \rightarrow Cluster shape constraints are relaxed, isolation constraints increased to compensate.

 \rightarrow Using DNN technique to reconstruct and measure the mass of merged photon system in CMS ECAL <u>arXiv:2204.12313. Acc. by PRD.</u>.

3) $H \rightarrow AA \rightarrow 4 \gamma$: boosted

- Background: QCD production with prompt and "fake" photons from $\pi^0\!\!\to\gamma\gamma$ decay.
- Using MC simulation for $H \rightarrow \gamma \gamma$ and data driven templates from $M_{\Gamma 1}$ - $M_{\Gamma 2}$ side band for non-resonant background.
- No excess observed over background.

CMS-PAS-HIG-21-016

3) $H \rightarrow AA \rightarrow 4 \gamma$: resolved

- Looking for excess over SM background in m_{4v} ~ 125 GeV using Bump Hunting technique.
 BDT built using photons id and kinematics.
- BDT built using photons id and kinematics. Looking for similarity of two paired m_{2v} mass.

arXiv:2208.01469. Sub. to JHEP.

11

3) $H \rightarrow AA \rightarrow 4 \gamma$: constraints

12

3) $H \rightarrow AA \rightarrow 4 \gamma$: constraints

14

4) Rare decay: $H_{125} \rightarrow Z\gamma$

- $Z \rightarrow II$ final state considered
- Search performed like $H \rightarrow \gamma \gamma$ in M_{II_V} spectrum.
- A particular care to reconstruct well' $Z \rightarrow II$ mass using KinFit and FSR recovery.
- Events are selected using BDT classifier to fight $Z/\gamma^* + \gamma / Z/\gamma^* + jet / tt backgrounds.$

Summary and Conclusion

- BSM decays of the H125 is an active domain of search for BSM physics in the EW sector.
- H₁₂₅ LFV sector is particularly relevant to explore B physics anomalies. A constraint below 0.2% is set at 95 CL. This is more stringent than global constraint of B_{BSM} (< 6% at 68 CL).
- $H_{125} \rightarrow AA \rightarrow 4\gamma$ search is relevant for many models predicting ALP and BSM scalars. Constraints at 0.01% level down to 200 MeV!
- Hints for $H_{125} \rightarrow Z\gamma$ rare decay appeared on the horizon.

Danielle Monico, 2021

4) $H \rightarrow AA \rightarrow 2\mu 2\tau$: semi-boosted

JHEP08(2020)139

- Analysis channel: $H \rightarrow \mu \mu \tau_{\mu} \tau_{h}$.
- A dedicated reconstructing algorithm allows to identify the boosted τ_μτ_μ final state.
- 2 D fit model using templates from side band:

4) $H \rightarrow AA \rightarrow 2\mu 2\tau$: resolved

JHEP08(2020)139

- BR(H \rightarrow aa) < 0.2-0.3 % covering the gap in M_{4γ}. Even if matching is model dependent.
- Example of reinterpretation in 2HDM.