Results of Searching for HH Production with the ATLAS Experiment

Zhe Yang

On behalf of the ATLAS collaboration

Probing Higgs potential

The Higgs potential is introduced in SM. It has the following form when expanding the field around the ground state:

$$V(\phi) = -\frac{\mu^4}{4\lambda} - \mu^2 H^2 + \lambda \nu H^3 + \cdots$$

- the 2nd term is the mass term, indicating a physical particle, the Higgs boson, which has been discovered 10 years ago
- the 3rd term is the Higgs self-interaction terms
- HH production allows direct probing of the Higgs boson self-interaction thus probing the shape of Higgs potential
- The deviation from the SM predicted self-interaction could indicate new physics

Higgs boson pair production at the LHC

- Di-Higgs production processes at the LHC are predicted by the SM
 - Gluon-gluon fusion
 - $\sigma_{ggF}^{SM} \simeq 31 \, fb \, [13 \, TeV]$
 - the dominant mode
 - two diagrams interferes destructively
 - Vector-boson fusion
 - $\sigma_{VBF}^{SM} \simeq 1.7 \ fb \ [13 \ TeV]$
 - the second dominant mode
 - Associated productions, HHV, HHtt
 - with much smaller production cross-sections

SM HH mass distribution

Particles from the HH production in the self-interaction process are soft

- Challenging for hadronic triggers and detector object reconstruction/identification!
- ♦ $\kappa_{\lambda} \neq$ 1 modifies the cross-section and kinematical properties of HH events

Higgs boson pair decay channels

- Each Higgs boson decays to one of the bb/WW/gg/ττ/ZZ/γγ final states
- Different channels have different detection opportunities/challenges
 - results from bbbb, bbττ, bbγγ are presented today, which providing the best sensitivity to HH production

	bb	ww	ττ	ZZ	YY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

by Katharine Leney

$HH \rightarrow bbbb$

ATLAS-CONF-2022-035

- highest branching ratio
- ♦ sensitive to HH events with large transverse momentum p_T^H
- large multi-jet background

$HH \rightarrow bbbb$

- Events considered are selected online with the "2b2j" and "2b1j" trigger signature
- Selection & reconstruction of 4b system starts from the requirement to have at least 4 jets with $p_T > 40 \text{ GeV}$, at least 2 of which are b-jets
- Signal region (SR) is set to have two b-jets pairs with good compatibility with a Higgs boson
- Data-driven background model based on 2 b-tags CR event re-weighting
 - Re-weighting function derived with machine-learning techniques in CRs around the SR

HH \rightarrow *bbbb*: Results in SM HH production search

 \bullet m_{HH} used as the discriminating variable for fitting

Parameter	Expected Constraint		Observed Constraint		
	Lower	Upper	Lower	Upper	
κ_{λ}	-4.6	10.8	-3.9	11.1	
κ_{2V}	-0.05	2.12	-0.03	2.11	

	Observed Limit	-2σ	-1σ	Expected Limit	$+1\sigma$	$+2\sigma$
$\sigma_{\rm ggF}/\sigma_{\rm ggF}^{\rm SM}$	5.5	4.4	5.9	8.2	12.4	19.6
$\sigma_{ m VBF}/\sigma_{ m VBF}^{ m SM}$	130.5	71.6	96.1	133.4	192.9	279.3
$\sigma_{\rm ggF+VBF} / \sigma_{\rm ggF+VBF}^{\rm SM}$	5.4	4.3	5.8	8.1	12.2	19.1

$\rm HH \rightarrow bb\tau\tau$

ATLAS-CONF-2021-030

- Intermediate branching fraction
- Relatively clean final states
- Moderate backgrounds

$HH \rightarrow bb\tau\tau$

Signal regions recorded with different trigger strategies

Category	$ au_{ ext{had}} au_{ ext{had}}$		$ au_{ m lep} au_{ m had}$		
Trigger	single τ_{had} triggers (STTs)	di- $ au_{ m had}$ triggers (DTTs)	single-lepton triggers (SLTs)	lepton-plus- $ au_{had}$ triggers (LTTs)	
Region	$ au_{ m had} au_{ m had}$		$ au_{ m lep} au_{ m had}$ - SLT	$ au_{ m lep} au_{ m had}$ - LTT	

- Background modeling
 - combination of simulation-based and data-driven techniques
- The analysis is dominated by statistical uncertainties

HH $\rightarrow bb\tau\tau$: Results in SM HH production search

MVA scores used as discriminating variable for fitting

		Observed	-2σ	$-1~\sigma$	Expected	$+1 \ \sigma$	$+2~\sigma$
$\tau_{\rm had}\tau_{\rm had}$	$\sigma_{\rm ggF+VBF}$ [fb]	145	70.5	94.6	131	183	245
	$\sigma_{\rm ggF+VBF}/\sigma_{\rm ggF+VBF}^{\rm SM}$	4.95	2.38	3.19	4.43	6.17	8.27
$\tau_{\rm lep}\tau_{\rm had}$	$\sigma_{\rm ggF+VBF}$ [fb]	265	124	167	231	322	432
	$\sigma_{\rm ggF+VBF}/\sigma_{\rm ggF+VBF}^{\rm SM}$	9.16	4.22	5.66	7.86	10.9	14.7
Combined	$\sigma_{\rm ggF+VBF}$ [fb]	135	61.3	82.3	114	159	213
	$\sigma_{\rm ggF+VBF}/\sigma_{\rm ggF+VBF}^{\rm SM}$	4.65	2.08	2.79	3.87	5.39	7.22

- No significant data excess over predicted background
- Cross-section limits are set as listed in the table

Variable	$ au_{ m had} au_{ m had}$	$\tau_{\rm lep} \tau_{\rm had} { m SLT}$	$\tau_{\text{lep}} \tau_{\text{had}} \text{ LTT}$
m _{H H}	1	1	1
$m_{\tau\tau}^{\rm MMC}$	1	1	1
m _{bb}	1	1	1
$\Delta R(\tau, \tau)$	1	1	1
$\Delta R(b, b)$	1	1	
$\Delta p_{\rm T}(\ell, \tau)$		1	1
Sub-leading <i>b</i> -tagged jet $p_{\rm T}$		1	
m_{T}^W		1	
$E_{\mathrm{T}}^{\mathrm{miss}}$		1	
$\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} \phi$ centrality		1	
$\Delta \phi(\ell \tau, bb)$		1	
$\Delta \phi(\ell, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})$			1
$\Delta \phi(\ell \tau, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})$			1
ST			1

11

$HH \rightarrow bb\gamma\gamma$

HDBS-2018-34

- Small branching fraction
- Very clean signature \rightarrow excellent $m_{\gamma\gamma}$ resolution with small backgrounds
- Enhanced sensitivity at low $m_{HH} \rightarrow$ enhanced sensitivity to the Higgs boson self-interaction

$HH \rightarrow bb\gamma\gamma$

- Event selection
 - events considered use a di-photon trigger and exactly 2 bjets
 - after common preselection, extra different selections are applied for resonant/non-resonant studies
- ♦ Events category based on $m^*_{bb\gamma\gamma}$ and MVA scores
 - $m_{bb\gamma\gamma}^* = m_{bb\gamma\gamma} m_{bb} m_{\gamma\gamma} + 250 \text{ GeV}(\sim 2m_{\text{H}})$
- Signal/background modeling
 - H / HH shape from simulation
 - continuum background shape from data
- The analysis is dominated by statistical uncertainties

HH $\rightarrow bb\gamma\gamma$: Results in SM HH production search

• $m_{\gamma\gamma}$ used as discriminating variable for fitting

observed (expected) upper limit at 95% CL on the signal strength \geq 4.2 (5.7) times the SM prediction

HH combination results (95% CL)

ATLAS-CONF-2022-050

limits on κ_{λ}

HH resonant results (95% CL)

HH+H: constraints on κ_{λ}

- Constraints on κ_{λ} via a scan of the negative-logarithm of the profile likelihood, for various fit configurations:
 - HH searches only, single-H measurements only, or their combinations

Results

- Profile κ_{λ} only: $-0.4 < \kappa_{\lambda} < 6.3$ (95% CL)
- Profile $\kappa_{\lambda}, \kappa_t, \kappa_V, \kappa_b, \kappa_{\tau}: -1.3 < \kappa_{\lambda} < 6.1$ (95% CL)

Higgs Hunting - 13/09/2022 - HH results in the ATLAS experiment

Summary

- Observation and measurement of the HH production is crucial to probe the shape of the SM Higgs potential and search for new physics BSM
- The combined searching results from the *bbbb*, *bbττ*, *bbγγ* channels set the observed (expected) limits of the σ_{HH} of 2.4 (2.9) times the SM prediction at 95% CL based on 139 fb⁻¹ data collected by the ATLAS experiment in Run2.
 - The Higgs self-interaction allowed κ_{λ} range is also set at 95% CL
 - $\kappa_{\lambda} \in [-0.6, +6.6]$ (HH combination)
 - $\kappa_{\lambda} \in [-0.4, +6.3]$ (HH + H combination)
- Looking forward to Run3 and future HL-LHC programs to increase the data sets to probe the Higgs potential structure with much better sensitivity
 - Run 3: factor of ~3
 - HL-LHC: factor of ~20

Back-up

Higgs Hunting - 13/09/2022 - HH results in the ATLAS experiment

HH resonant (95% CL) : p0-value

HL-LHC studies: $bb\gamma\gamma + bb\tau\tau$

ATL-PHYS-PUB-2022-005

	95% CL limits on κ_{λ} from cross-section scan			
Uncertainty scenario	$bar{b}\gamma\gamma$	$b\bar{b}\tau^{+}\tau^{-}$	Combination	
No syst. unc.	[1.2, 4.2]	[2.4, 4.5]	[2.6, 3.6]	
Baseline	[1.1, 4.3]	[1.7, 5.4]	[2.0, 4.1]	
Theoretical unc. halved	[0.1, 5.2]	[0.9, 6.2]	[1.2, 5.0]	
Run 2 syst. unc.	[0.1, 5.3]	[0.6, 6.5]	[0.9, 5.1]	