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2 HH production

● Search for HH production 
1. Allows to probe parameters describing the Higgs field potential 

▻  

2. Effect of cov. derivative  on  in  
▻ Yields additional quartic VVHH coupling 

● Focus on non-resonant SM production in the talk

V =
m2

H

2
H2 +

m2
H

2ν
H3 +

m2
H

8ν2
H4

Dμ ϕ ℒH

ggF

VBF 𝜎VBF = 1.73 fb (13 TeV)

the two protons, and in which all radiation has been
integrated over. Since the single-gluon exchange is zero
for color reasons, this approximation is exact at NLO,
while it has been shown to be accurate to more than 1% at
NNLO for the single-Higgs process [32–34]. Because the
presence of an additional Higgs boson does not impact the
color flow between the hadrons, this limit is expected to be
just as valid for Higgs pair production.
This paper is structured in the followingway. In Sec. II we

present the details of our calculation, in Sec. III we present
results for the inclusive cross section, and differential
distributions are given in Sec. IV. We give our conclusions
in Sec. V.

II. HIGGS PAIR PRODUCTION IN VBF

We start by setting up the formalism needed to calculate
the inclusive cross section up to third order in the expansion
in the strong coupling constant, which is analogous to the
single-Higgs one.

The VBF Higgs pair production cross section is calcu-
lated as a double deep inelastic scattering (DIS) process,
and can be written as [31]

dσ ¼
X

V

G2
Fm

4
V

s
Δ2

VðQ2
1ÞΔ2

VðQ2
2ÞdΩVBF

×WV
μνðx1; Q2

1ÞMV;μρMV$;νσWV
ρσðx2; Q2

2Þ: ð1Þ

Here GF is Fermi’s constant, mV and Δ2
V are the mass and

squared propagators of the mediating W or Z bosons, andffiffiffi
s

p
is the collider center-of-mass energy. We definedQ2

i ¼
−q2i and xi ¼ Q2

i =ð2Pi · qiÞ as the usual DIS variables,
where qi is the four-momentum of the vector boson Vi and
Pi that of the initial proton. Finally WV

μν is the hadronic
tensor and dΩVBF is the four particle VBF phase space.
The matrix element of the VV → hh subprocess is
expressed as [35]

MV;μν ¼ 2
ffiffiffi
2

p
GFgμν

"
2m4

V

ðq1 þ k1Þ2 −m2
V þ iΓVmV

þ 2m4
V

ðq1 þ k2Þ2 −m2
V þ iΓVmV

þ 6νλm2
V

ðk1 þ k2Þ2 −m2
H þ iΓHmH

þm2
V

#

þ
ffiffiffi
2

p
GFm4

V

ðq1 þ k1Þ2 −m2
V

ð2kμ1 þ qμ1Þðkν2 − kν1 − qν1Þ
m2

V − iΓVmV
þ

ffiffiffi
2

p
GFm4

V

ðq1 þ k2Þ2 −m2
V

ð2kμ2 þ qμ1Þðkν1 − kν2 − qν1Þ
m2

V − iΓVmV
; ð2Þ

where k1, k2 are the final state Higgs momenta, which
satisfy k1 þ k2 ¼ q1 þ q2; λ is the trilinear Higgs self-
coupling; and ν is the vacuum expectation value of the
Higgs field.
Defining P̂i;μ ¼ Pi;μ − Pi·qi

q2i
qi;μ, the hadronic tensor WV

μν
in Eq. (1) is given by

WV
μνðxi; Q2

i Þ ¼
"
−gμν þ

qi;μqi;ν
q2i

#
FV
1 ðxi; Q2

i Þ

þ
P̂i;μP̂i;ν

Pi · qi
FV
2 ðxi; Q2

i Þ

þ iϵμνρσ
Pρ
i q

σ
i

2Pi · qi
FV
3 ðxi; Q2

i Þ; ð3Þ

where the FV
i ðx;Q2Þ functions are the standard DIS

structure functions with i ¼ 1; 2; 3, which can be

expressed as a convolution of the parton distribution
functions (PDF) with the short distance coefficient func-
tions

FV
i ¼

X

a¼q;g

CV;a
i ⊗ fa; i ¼ 1; 2; 3: ð4Þ

To evaluate Eq. (4), it is useful to define the singlet and
nonsinglet distributions qS, qNS;i, as well as the nonsinglet
valence distribution qVNS and the asymmetry δq&NS

qS¼
Xnf

j¼1

ðqjþ q̄jÞ; q&NS;j¼qj& q̄j; qvNS¼
Xnf

j¼1

ðqj− q̄jÞ;

δq&NS¼
X

u-type

ðqj& q̄jÞ−
X

d-type

ðqj& q̄jÞ: ð5Þ

FIG. 1. Born-level diagrams contributing to VBF Higgs pair production.
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2 The tt̄H Process in the Standard Model of Particle Physics

The peculiarity of the potential V in Equation 2.29 is its symmetric shape that allows for asym-
metric ground states,

V(f) = �
µ2

2
f†f +

l

4
(f†f)

2, (2.32)

which is illustrated in Fig. 2.1. In configurations where the constants µ2 and l are positive, the

Re(�)
Im(�)

V (�)

Figure 2.1: Illustration of the Higgs potential V(f). While the potential itself is symmetric and
satisfies gauge invariance, the ground state (purple sphere) is realized for all values on a circle
with radius f =

p
2µ2/l, effectively breaking the symmetry for non-vanishing fields f.

symmetry is spontaneously broken when the minimum of V(f) is obtained for non-vanishing
scalar fields f, which is fulfilled at

f =
1

p
2

 
0
n

!
with n =

2µ
p

l
. (2.33)

The vacuum expectation value (VEV) n only depends on µ and l. To perform perturbative
calculations, an expansion of Equation 2.31 around the VEV with f0 ! 1/p

2(n + H + ic) is
required. Without restricting generality, the unitary gauge Re(f+

) = Im(f+
) = c = 0 can be

chosen owing to the symmetry of the ground state in V(f). The scalar fields correspond to three
so-called Goldstone bosons, cannot be observed in nature, and transmute into the longitudinal
components of the physical W± and Z bosons. This yields

f =
1

p
2

 
0

n + H

!
(2.34)

and the potential (Equation 2.32), expanded in powers of the real Higgs field H, becomes

V = µ2H2
+

µ2

n
H3

+
µ2

4n2 H4
=

m2
H

2
H2

+
m2

H
2n

H3
+

m2
H

8n2 H4, (2.35)

where the Higgs boson mass is identified as mH =
p

2µ2. The potential also exhibits triple and
quadruple Higgs boson vertices with couplings proportional to m2

H/n and m2
H/n2, respectively.

Finally, the mass terms for the W±
µ and Zµ gauge fields emerge by applying the covariant

derivatives to the first summand of the spontaneously broken Lagrangian LHiggs (Equation 2.29),
when utilizing the mixing of (Wa

µ, Bµ) into (W±
µ , Zµ, Aµ) of Equations 2.25 and 2.28 that results

10

dep
end

ence
 on 

k's

dependence on k's

V(ϕ) = − μ2 (ϕ†ϕ) + λ (ϕ†ϕ)2

Higgs discovery 
(2012)

Higgs self-coupling 
(20??)
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3 Event kinematics & effect on analyses

●  spectrum depends on kλ 
■ Softer for large | kλ | 
■ Hardest close to max. interference + double structure 

● Effect on analyses 
1. Large |kλ| 
✓ Sensitivity due to enhanced cross section 
✗ Soft  spectrum reduces selection efficiency 

2. Medium kλ 
✓ Hard  spectrum leads to clear (possibly boosted) signatures 
✗ Enhancement low or even negative 

● Modeling of HH (and single H) depending on (kλ, kt, kt, kV) in backup
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20 Chapter 1. HH cross section predictions

Figure 1.12: Higgs boson transverse momentum distributions at 14 TeV for the considered ∑∏ values
[64].

Figure 1.13: 3-dimensional visualisation of the mH H distribution at 14 TeV, as a function of ∑∏ and
mH H [64].

Parton Shower Matching

Already in a pure fixed-order NLO calculation there are contributions in both the Born phase space
¡B and in the real emission phase space ¡R =¡B £¡1. In a parton shower matched calculation, we
denote them by B̄(¡B ) and H(¡R ), respectively:

B̄(¡B ) = B(¡B )+V (¡B )+
Z

D(¡R )£(µ2
PS ° t (¡R ))d¡1, (1.10)

H(¡R ) = R(¡R )°D(¡R )£(µ2
PS ° t (¡R )) . (1.11)

In Eqs. (1.10) and (1.11), B denotes the leading-order contributions, V the UV-subtracted virtual
corrections, R the real-emission corrections, and D the differential infrared subtraction terms. The
scaleµPS is the parton shower starting scale and t (¡R ) is the evolution variable of the parton shower.
Through variations of µPS, contributions can be shuffled around between B̄ and H while leaving
their sum constant.

When considering Eqs. (1.10) and (1.11) by themselves, real emission configurations are gen-
erated only in H events. Furthermore, the emissions are suppressed in the phase space region

1.4. Differential predictions and MC generators for gluon fusion 19

Figure 1.10: Higgs boson pair invariant mass distributions at 14 TeV for (left) positive small values
of ∑∏ and (right) larger or negative values of ∑∏ [64].

Figure 1.11: Normalised Higgs boson pair invariant mass distributions at 14 TeV for (left) positive
small values of ∑∏ and (right) larger or negative values of ∑∏ [64].

1.4 Differential predictions and MC generators for gluon fusion
G. Heinrich, S.P. Jones, M. Kerner, S. Kuttimalai, E. Vryonidou

The non-resonant production of a pair of Higgs bosons in gluon fusion is available within several
public Monte Carlo programs. Currently, the most sophisticated predictions which include a parton
shower are based on the NLO matrix-element including a finite top quark mass [17, 18]. The fixed-
order result was recently re-calculated and extended to allow also for a running top quark mass [19].
The NLO calculation was first interfaced to the POWHEG-BOX [67, 68] and MG5_aMC@NLO [48, 80]
in Ref. [52], and to SHERPA [81] in Ref. [53].

The matching and parton shower uncertainties have been extensively studied in the litera-
ture [52, 53, 82], and were found to be large for certain observables. Similar effects have been ob-
served in other processes including the production of a Higgs boson in gluon fusion [83, 84] and
Z-boson pair production in gluon fusion [85].

Here, we briefly review the current status of these uncertainties focusing on one of the most sen-
sitive distributions (the pT of the di-Higgs boson system). We will summarise the MC@NLO [86] and
POWHEG [66] matching schemes used in the literature. Results obtained from the POWHEG-BOX,
MG5_aMC@NLO and SHERPA implementations and via analytic resummation [87] are compared.
The shower uncertainty observed for the POWHEG-BOX implementation will also be discussed.

arXi:1910.00012

Cross section enhancement

ggF + VBF
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Figure 1.10: Higgs boson pair invariant mass distributions at 14 TeV for (left) positive small values
of ∑∏ and (right) larger or negative values of ∑∏ [64].

Figure 1.11: Normalised Higgs boson pair invariant mass distributions at 14 TeV for (left) positive
small values of ∑∏ and (right) larger or negative values of ∑∏ [64].

1.4 Differential predictions and MC generators for gluon fusion
G. Heinrich, S.P. Jones, M. Kerner, S. Kuttimalai, E. Vryonidou

The non-resonant production of a pair of Higgs bosons in gluon fusion is available within several
public Monte Carlo programs. Currently, the most sophisticated predictions which include a parton
shower are based on the NLO matrix-element including a finite top quark mass [17, 18]. The fixed-
order result was recently re-calculated and extended to allow also for a running top quark mass [19].
The NLO calculation was first interfaced to the POWHEG-BOX [67, 68] and MG5_aMC@NLO [48, 80]
in Ref. [52], and to SHERPA [81] in Ref. [53].

The matching and parton shower uncertainties have been extensively studied in the litera-
ture [52, 53, 82], and were found to be large for certain observables. Similar effects have been ob-
served in other processes including the production of a Higgs boson in gluon fusion [83, 84] and
Z-boson pair production in gluon fusion [85].

Here, we briefly review the current status of these uncertainties focusing on one of the most sen-
sitive distributions (the pT of the di-Higgs boson system). We will summarise the MC@NLO [86] and
POWHEG [66] matching schemes used in the literature. Results obtained from the POWHEG-BOX,
MG5_aMC@NLO and SHERPA implementations and via analytic resummation [87] are compared.
The shower uncertainty observed for the POWHEG-BOX implementation will also be discussed.

https://arxiv.org/abs/1910.00012
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5 Published HH searches at CMS

●  resolved  (Phys. Rev. Lett. 129, 081802) 
■ Large BR, large backgrounds 

●  boosted  (arXiv:2205.06667) 
■ Merged jets topology 

●   (arXiv:2206.09401) 
■ Sizable BR, small backgrounds 

●   (arXiv:2206.10657) 
■ Small BR, moderate backgrounds 

●   (JHEP03(2021)257) 
■ Small BR, very clean mass resolution 

●   (arXiv:2206.10268) 
■ Multiple small BRs, various final states

HH → bbbb

HH → bbbb

HH → bbττ

HH → bbZZ(4l)

HH → bbγγ

HH → WWWW + WWττ + ττττ

07/07/2022 ICHEP 2022 4

  HH decays : no golden channel ! 

3.1%3.1%

33.9%33.9%

0.26%0.26%

7.3%7.3%

4.6%4.6%

2.7%2.7% 0.39%0.39%

bbbb (resolved) : Large BR, large backgrounds 

arXiv:2202.09617

bbbb (boosted) : Merged jets topology

 arXiv:2205.06667

bbττ : Sizeable BR, small backgrounds

arXiv:2206.09401

bbɣɣ : Small BR, very clean mass resolution

JHEP03(2021)257

bbZZ : Medium BR, moderate backgrounds

arXiv:2206.10657

WWWW, WWττ, ττττ (Multilepton) : 

Medium/small BR, multiple Anal states

arXiv:2206.10268

(most sensitive channels are public)

→ No golden channel 

→ each channel comes with its own challenges

http://10.1103/PhysRevLett.129.081802
https://arxiv.org/abs/2205.06667
https://arxiv.org/abs/2206.09401
https://arxiv.org/abs/2206.10657
https://link.springer.com/content/pdf/10.1007/JHEP03(2021)257.pdf
https://arxiv.org/abs/2206.10268
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6   resolvedHH → bbbb

● Phys. Rev. Lett. 129, 081802 

● Strategy 
■ Select events with resolved b jets 
■ Rely on CMS DeepJet efficiency (∼75%)                                                                                                                      

and b-jet energy regression 
■ Simultaneous fit on distributions 

▻ BDT in ggF-like categories 

▻  in VBF-like categories 

● Results 
■ Upper limit on σHH/σSM of 3.9 (7.9) 

■ Upper limit on σVBF/σSM of 226 (412) 

■ Constraints kλ ∈ [-2.3, +9.4], k2V ∈ [-0.1, +2.2]

mHH

07/07/2022 ICHEP 2022 7

  HH→bbbb arXiv:2202.09617

First evidence of non-zero values at 6.3 σ 

Resolved Boosted

arXiv:2205.06667

See next talk by Valeria D’Amante

07/07/2022 ICHEP 2022 6

  HH→bbbb (resolved) arXiv:2202.09617
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Figure 2: Observed and expected 95% CL upper limits on the sggF+VBF HH cross section as a
function of kl (left), and on the sVBF HH cross section as a function of k2V (right). The green
(yellow) band indicates the regions containing 68% (95%) of the limit values expected under
the background-only hypothesis. The red lines denote the theoretical cross section expectation
assuming that other couplings are set to the SM prediction. For the cross section limit as a
function of k2V, the ggF HH production is assumed to correspond to the SM prediction.

SM expectation, to be in the range �0.1 < k2V < 2.2 (�0.4 < k2V < 2.5). These are the most
stringent observed constraints to date on the HH production cross sections and on the k2V
coupling.
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7   boostedHH → bbbb

● arXiv:2205.06667 

● Strategy 
■ Exploit boosted topology for kλ, k2V ≠ 1 

■ Select events with two large-cone jets 
▻  GeV 
▻  

■ Distinguish between large-cone                                                                                                             
and QCD jets using GNN (ParticleNet) 

● Results 
■ Upper limit on σHH/σSM of 9.9 (5.1) 

■ Constraints kλ ∈ [-9.9, +16.9],                                                                                                                                    
and k2V ∈ [+0.62, +1.41] 

■ First analysis to exclude k2V ≤ 0 

● More in Irene's talk after the break

pT > 300
|η | < 2.4

H → bb

07/07/2022 ICHEP 2022 7

  HH→bbbb arXiv:2202.09617

First evidence of non-zero values at 6.3 σ 

Resolved Boosted

arXiv:2205.06667

See next talk by Valeria D’Amante
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8 HH → bbττ

● arXiv:2206.09401 

● Strategy 
■ Target both ggF and VBF modes 

■ Profit from CMS DeepJet and DeepTau object taggers 

■ Split into resolved, boosted and VBF phase spaces 
■ Further divide VBF phase space using multi-class classifier 
■ Fit DNN in 72 resulting categories 

● Results 
■ Upper limit on σHH/σSM of 3.3 (5.2) 

■ Upper limit on σVBF/σSM of 124 (154) 
▻ Best expected HH VBF limit at CMS 

■ Constraints kλ ∈ [-1.7, +8.7] 

■ Constraints k2V ∈ [-0.4, +2.6] 

● More details in Valeria's talk
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9  and multileptonHH → bbZZ(4l) HH →

● bbZZ(4l) (arXiv:2206.10657) 
● Strategy 
■ Select 2 pairs of OS leptons 

▻  GeV 

▻  GeV 
■ Select 2 b-jets with highest score (DeepJet) 
■ Fit BDT distributions 

● Results 
■ Upper limit on σHH/σSM of 32 (40) 

■ Constraints kλ ∈ [-8.8, +13.4] 

● multilepton (arXiv:2206.10268) 
● Strategy 
■ Combination of 7 categories involving leptons 

▻ , ,  decay channels 

■ Lower lepton thresholds beneficial at high |kλ| 
■ BDTs fit in all categories 

● Results 
■ Upper limit on σHH/σSM of 21.3 (19.4) 

■ Constraints kλ ∈ [-6.9, +11.1]

40 (12) < mZ1
(mZ2

) < 120
115 < m4l < 135

HH → WWWW WWττ ττττ

07/07/2022 ICHEP 2022 13

  HH→Multilepton (WWWW, WWττ, ττττ) 

● l/τh fakes : data-driven 

with fake factor method in CR

● Electron charge Wip measurement : 

data-driven using similar method

● Other backgrounds : simulation

Backgrounds

Results

● 7 categories based on l/τ

→ 2lss, 3l, 4l, 3l+1τh, 2l+2τh, 

    1l+3τh, 0l+4τh

● AK4/AK8 jets (hadronic W decay)

 → 2lss and 3l categories
● B-jet veto
● Mll cuts

● Remove meson decays
● Overlap with bbZZ
● Reduce DY background

Event selection

arXiv:2206.10268

Signal extraction

BDT for each category 
(combined for all years)
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  HH→bbZZ 

● Irreducible :
● Single Higgs 
● qq→ZZ*, gg → ZZ* 
● ttW, ttZ

● Reducible : Z+X (fake leptons) 

    → data-driven approach : 

       fake factor e, µ in control regions

Backgrounds

Signal extraction

BDT for each 
category and data 

taking year

● 2 pairs of OS SF isolated leptons

● ZZ candidates : 

● 2 jets → b-jets (highest b-tag score)

● 3 categories: 4e, 4µ, 2e2µ

● 4l invariant mass

Event selection

arXiv:2206.10657

Results
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11 HH combination

● Run 2 combination 
■ Observed (expected) limit at 95% CL on  measured as 3.4 (2.5) 

● 2016 data 
■ Scaling expected 95% CL limit of 12.8                                                                                                              

to Run 2 luminosity would imply a limit of 6.5

σ/σSM

2016 data

1 10 100

Theory
σ HH) / →(pp σ95% CL limit on 

Observed: 32
Expected: 40
bb ZZ

Observed: 21
Expected: 19
Multilepton

Observed: 8.4
Expected: 5.5

γγbb 

Observed: 3.3
Expected: 5.2

ττbb 

Observed: 6.4
Expected: 4.0
bb bb

Observed: 3.4
Expected: 2.5
Combined

Observed         Median expected
                      68% expected   
                      95% expected   

CMS 

 = 1tκ = λκ
 = 12Vκ = Vκ

 (13 TeV)-1138 fb

Run 2 combination
Phys. Rev. Lett. 122 (2019) 121803 Nature 607 (2022) 60

new

new

x 3 improvement

x 5 improvement

x 5 improvement 
(x 30 in boosted ch.)

Major improvements due to 
➜ Detector upgrades & trigger development 
➜ CMS reconstruction & object tagging 
➜ Improved analysis techniques 
➜ Additional decay channels

http://dx.doi.org/10.1103/PhysRevLett.122.121803
https://www.nature.com/articles/s41586-022-04892-x
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12 Constraints on kλ and k2V

● kλ 

■ Observed constraint at 95% CL to -1.24, +6.49  

● k2V 

■ Observed constraint at 95% CL to +0.67, +1.38  

■ k2V = 0 excluded with 6.6σ (assuming SM values of other k's) 

▻ Establishes quartic VVHH coupling for the first time
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13 Summary

● Searches of HH production at CMS aim to investigate both tri-H and quartic VVHH couplings 
→ Five decay channels published and combined 
→ Ongoing efforts to include more decay channels and production modes 

● kλ constrained to -1.24, +6.49 , k2V to +0.67, +1.38  

● k2V ≤ 0 excluded with 6.6σ assuming otherwise SM couplings 

● Combined upper limit on inclusive HH production observed as 3.4 x SM 
→ Run 2 expectation exceeded 

● EFT interpretations and resonant HH searches on the horizon 
● Exciting years ahead!
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v Standard Model Double Higgs production
◦ !!" "" → $$ = 31.05 +, @ - = 13 ./0
◦ !!" 012 $$ = 1.726 +, @ - = 13 ./0
◦ Access to the trilinear Higgs coupling

v Test non-resonant BSM effective models with 
anomalous couplings

◦ Test anomalous 6#and 6$
◦ Test anomalous VBF couplings CV and C2V

◦ Test EFT benchmarks

Medium BR and relatively low background
ℬ $$ → ,,88 ≈ 7.3%

This analysis covers 3 88 final states: 8%8&, 8'8&, 8&8&
ℬ 88 → 8(/&8& ≈ 88%
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15 HH signal modeling

● Morphing between shapes produced at discrete (kλ, kt, kt, kV) points used for template fits continuous in all k's 

■ Additional effects modelled (backup) 
▻ kλ dependent QCD scale + mtop uncertainty on HHggF 

▻ Scaling of single Higgs background cross sections with k’s 

▻ Scaling of Higgs branching fractions with k’s 

● Signal model available publicly (based on CMS "combine" tool / RooFit) 
■ Basis for all Run 2 HH analyses at CMS 
■ Also used by some FCC projections (non-CMS)

Dqqhh(k2V, kV, kλ) = r ⋅ rqqhh ⋅
6

∑
i

f i
qqhh(k2V, kV, kλ) ⋅ Di

qqhh

Dgghh(kλ, kt) = r ⋅ rgghh ⋅
3

∑
i

f i
gghh(kλ, kt) ⋅ Di

gghh

(morphed shape) (discrete shapes)(morphing fractions)(coupling strengths)

Morphing fractions   
from parameterization of amplitudes 

at guidance points 
(backup)

f i
gghh,qqhh

Same effects as presented in 
Alkaid's talk on ATLAS H+HH

https://gitlab.cern.ch/hh/tools/inference
https://indico.ijclab.in2p3.fr/event/7779/timetable/#49-combination-of-higgs-boson
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16 HH ggF modeling

           Luca Cadamuro (UF)                                April 21st, 2020A HH combine model for ggF and VBF HH production

ggF modelling

￭ The formula is valid at any order of the calculation (no more “triangle”, “box” 
and “interference” as in the LO case, but terms of |A|2 that scale with the 
same powers of the couplings) 

￭ The formula is also valid differentially (dσ/dx) when using dt/dx, db/dx, di/dx 
as inputs

5

(a) gg double-Higgs fusion: gg → HH
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(b) WW/ZZ double-Higgs fusion: qq′ → HHqq′
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(d) Associated production with top-quarks: qq̄/gg → tt̄HH

Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
colliders.

where

t̂± = −
ŝ

2

(

1− 2
M2

H

ŝ
∓
√

1−
4M2

H

ŝ

)

, (5)

with ŝ and t̂ denoting the partonic Mandelstam variables. The triangular and box form
factors F#, F! and G! approach constant values in the infinite top quark mass limit,

F# →
2

3
, F! → −

2

3
, G! → 0 . (6)

The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F#, F! and G! are used wherever they appear in the
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with ŝ and t̂ denoting the partonic Mandelstam variables. The triangular and box form
factors F#, F! and G! approach constant values in the infinite top quark mass limit,

F# →
2

3
, F! → −

2

3
, G! → 0 . (6)

The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F#, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
disagreement between the full NLO result and the LET result [7, 19].

For the numerical evaluation we have used the publicly available code HPAIR [44] in
which the known NLO corrections are implemented. As a central scale for this process

6

g

g t

t
_

H
H

g

H
HV*

V*

H
H

V*

(a) gg double-Higgs fusion: gg → HH

H

H

H

g

g

Q

H

Hg

g

Q

(b) WW/ZZ double-Higgs fusion: qq′ → HHqq′

q

q′

q

q′

V ∗

V ∗

H
H

(c) Double Higgs-strahlung: qq̄′ → ZHH/WHH

q

q̄′ V ∗

V

H

H

g

g

t̄

t
H
H

q

q̄
g

(d) Associated production with top-quarks: qq̄/gg → tt̄HH

Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
colliders.

where

t̂± = −
ŝ
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ŝ

)

, (5)
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factors F#, F! and G! approach constant values in the infinite top quark mass limit,

F# →
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3
, F! → −
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3
, G! → 0 . (6)

The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F#, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
disagreement between the full NLO result and the LET result [7, 19].

For the numerical evaluation we have used the publicly available code HPAIR [44] in
which the known NLO corrections are implemented. As a central scale for this process
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ŝ
∓

√

1−
4M

2
H

ŝ
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FIG. 1: Cartoon of the region in the plane (g⇤,�/g⇤), defined by Eqs. (13),(14), that can be probed
by an analysis including only dimension-6 operators (in white). No sensible e↵ective field theory
description is possible in the gray area (� < gmin), while exploration of the light blue region
(gmin < � <

p
g⇤gmin) requires including the dimension-8 operators.
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FIG. 2: Feyman diagrams contributing to double Higgs production via gluon fusion (an additional
contribution comes from the crossing of the box diagram). The last diagram on the first line
contains the t̄thh coupling, while those in the second line involve contact interactions between the
Higgs and the gluons denoted with a cross.

derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

diagram is characterized by a di↵erent scaling at large energies
p
ŝ = mhh � mt, mh. We
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           Luca Cadamuro (UF)                                April 21st, 2020A HH combine model for ggF and VBF HH production

ggF modelling
￭ In symbols 

σ(κλ, κt) = c (κλ, κt) · v  , where 
c = (κλ2 κt2, κt4, κλ κt3) is the vector of the couplings and 
v = (t, b, i) is the vector of the components 

￭ We have the full simulation of 4 NLO samples : κλ = 0, 1, 2.45, 5, κλ = 1 
Choosing 3 of them, we know their σ from the generator and can compute 
their ci (example : for κλ = 5, σNLO = 79.03 fb and c = (25, 1, 5) ) 
So this relation holds:
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VBF modelling
￭ Follows the same principle as the ggF one, but now with 6 components
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Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
colliders.
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with ŝ and t̂ denoting the partonic Mandelstam variables. The triangular and box form
factors F#, F! and G! approach constant values in the infinite top quark mass limit,

F# →
2

3
, F! → −

2

3
, G! → 0 . (6)

The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F#, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
disagreement between the full NLO result and the LET result [7, 19].

For the numerical evaluation we have used the publicly available code HPAIR [44] in
which the known NLO corrections are implemented. As a central scale for this process
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Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
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Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
colliders.
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ŝ

2

(

1− 2
M2

H

ŝ
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ŝ

)

, (5)
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The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F#, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
disagreement between the full NLO result and the LET result [7, 19].
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which the known NLO corrections are implemented. As a central scale for this process

6

(a) gg double-Higgs fusion: gg → HH
H

H

Hg

g

Q

H

H

g

g

Q

(b) WW/ZZ double-Higgs fusion: qq ′→ HHqq ′
q

q ′

q

q ′
V ∗

V ∗ H
H(c) Double Higgs-strahlung: qq̄ ′→ ZHH/WHH

q

q̄ ′

V ∗

V

H

H

g

g

t̄

t

H
H

q

q̄

g

(d) Associated production with top-quarks: qq̄/gg → tt̄HHFigure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron

colliders.
where

t̂± = − ŝ
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ŝ
2

(

1− 2
M

2
H

ŝ
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FIG. 1: Cartoon of the region in the plane (g⇤,�/g⇤), defined by Eqs. (13),(14), that can be probed
by an analysis including only dimension-6 operators (in white). No sensible e↵ective field theory
description is possible in the gray area (� < gmin), while exploration of the light blue region
(gmin < � <
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g⇤gmin) requires including the dimension-8 operators.
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FIG. 2: Feyman diagrams contributing to double Higgs production via gluon fusion (an additional
contribution comes from the crossing of the box diagram). The last diagram on the first line
contains the t̄thh coupling, while those in the second line involve contact interactions between the
Higgs and the gluons denoted with a cross.

derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

diagram is characterized by a di↵erent scaling at large energies
p
ŝ = mhh � mt, mh. We
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The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F#, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
disagreement between the full NLO result and the LET result [7, 19].

For the numerical evaluation we have used the publicly available code HPAIR [44] in
which the known NLO corrections are implemented. As a central scale for this process
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Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
colliders.
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with ŝ and t̂ denoting the partonic Mandelstam variables. The triangular and box form
factors F#, F! and G! approach constant values in the infinite top quark mass limit,

F# →
2

3
, F! → −

2

3
, G! → 0 . (6)

The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F#, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
disagreement between the full NLO result and the LET result [7, 19].

For the numerical evaluation we have used the publicly available code HPAIR [44] in
which the known NLO corrections are implemented. As a central scale for this process
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FIG. 1: Cartoon of the region in the plane (g⇤,�/g⇤), defined by Eqs. (13),(14), that can be probed
by an analysis including only dimension-6 operators (in white). No sensible e↵ective field theory
description is possible in the gray area (� < gmin), while exploration of the light blue region
(gmin < � <

p
g⇤gmin) requires including the dimension-8 operators.
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FIG. 2: Feyman diagrams contributing to double Higgs production via gluon fusion (an additional
contribution comes from the crossing of the box diagram). The last diagram on the first line
contains the t̄thh coupling, while those in the second line involve contact interactions between the
Higgs and the gluons denoted with a cross.

derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

diagram is characterized by a di↵erent scaling at large energies
p
ŝ = mhh � mt, mh. We
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18 Modeling of Higgs contributions

● Single Higgs background cross sections and Higgs BRs also depend on (kλ, kt, kV) 

● Both scalings implemented in our physics model for cases where 

■ different non-SM combinations of (kλ, kt, kV) are tested, or 

■ (kλ, kt, kV) are allowed to float during fit
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Figure 6. Dependence of ���3 for the relevant production processes at the LHC as a function of
� in the range |�|  20 (left) and zoomed in the region �2 < � < 8 (right). The style and colour
conventions of the lines are: ggF = solid black, tt̄H = dash-dotted red, VBF = dotted green, ZH

= dashed blue, WH = long-dashed magenta. The black dashed horizontal lines in the right plot
correspond to ±1%.
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Figure 7. Dependence of ���3 for the relevant decay widths (right) and corresponding �BR�3 as
defined in Eq. (4.4) (left). The solid black line represents �ff̄ , the long-dashed red line �WW , the
dashed blue line �ZZ and the dotted green line ��� .

degenerate with � ⇠ 6. The fact that the degeneracy appears at different values � for
different processes is important in order to be able to lift it.

The results for the decay widths and branching ratios are shown Fig. 7. We plot (left)
�⌃�3 as a function of � for the decay widths of the relevant modes at the LHC, which
we denote as ���3 , and we show (right) the analogous quantity (�BR�3) for the Branching
Ratios (BRs). The quantity �BR�3(i) for the Higgs decay into the final-state i can be
conveniently written as

�BR�3(i) =
(� � 1)(C�

1
(i)� C

�tot
1

)

1 + (� � 1)C�tot
1

, (4.4)

where we have defined C
�tot
1

⌘
P

j
BRSM(j)C�

1
(j) and with our input parameters C

�tot
1

=

2.3 · 10�3. The quantity C
�tot
1

, which actually is the C1 term for the total decay width, is
very small since C

�
1
(bb̄) = 0 and bb̄ is the dominant decay channel. Note that, although the

H ! gg decay is not phenomenologically relevant, the total decay width does depend on
���3(gg), since �gg yields a non-negligible fraction (8.5 %) of �tot.
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19 HH → bbγγ

● JHEP 03 (2021) 257 

● Strategy 

■  selection 

▻  

▻  

▻  resolution of 1.4 - 2.0 GeV 

■  selection 
▻ 2 jets with highest b-tag score (CMS DeepJet) 
▻  GeV 
▻ b-jet energy regression 

■ 2D maximum likelihood fit on  and  

● Results 
■ Upper limit on σHH/σSM of 7.7 (5.2) 

■ Upper limit on σVBF/σSM of 225 (208) 

■ Constraints kλ to [-3.3, +8.5] 

■ Constraints k2V to [-1.3, +3.5]

γγ
pT1 (pT2) > 0.33 (0.25) ⋅ mγγ

100 < mγγ < 180
mγγ

bb

70 < mbb < 190

mjj mγγ
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H→ ɣɣ

● 2 photons

● Invariant mass requirements : 

  

● 2 jets → b-jets (largest b-tag score)

● Invariant mass requirement :

● B-jet energy regression : jet + mjj

H→ bb

● Bias corrected
~ 5.5 GeV

● Resolution 
improved by 
20 %

σ = 1.4 - 2 GeV
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resolution
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