Higgs Effective Field Theories results in the ATLAS experiment

Alexander Held¹ on behalf of the ATLAS Collaboration

¹ University of Wisconsin–Madison

Higgs Hunting 2022 (Paris) https://indico.ijclab.in2p3.fr/event/7779/ Sep 13, 2022

Introduction

- Effective field theories (EFTs) can capture effects of heavy BSM states as perturbation around the Standard Model
 - different approaches possible: SM ⊂ SMEFT ⊂ HEFT (see <u>arXiv:1706.08945</u> for a review)
- Standard Model Effective Field Theory (SMEFT)

 $\mathbf{\mathcal{L}}_{SMEFT} = \mathcal{L}_{SM} + \sum \frac{c_i}{\Lambda^2} \mathcal{O}_i^{d=6} + \dots^*$

- expand SM with additional $SU(3)_C \times SU(2)_L \times U(1)_Y$ invariant interactions
- expansion parameter Λ interpreted as mass scale of new physics
- different flavor symmetry assumptions possible: e.g. $U(3)^5$, $U(2)_q \times U(2)_u \times U(3)_d \times U(3)_l \times U(3)_e$
- Wilson coefficients (free parameters) c_i are correlated
- Higgs Effective Field Theory (HEFT)
 - non-linearly realized electroweak symmetry with Higgs boson + independent Goldstone bosons
 - more general than SMEFT, no correlations between free parameters

BSM models could leave imprints at accessible energy scales, measured via Wilson coefficients

Overview of recent ATLAS Higgs EFT results

• HEFT

• **Di-Higgs** $b\bar{b}\tau\tau$ + $b\bar{b}\gamma\gamma$ **HEFT interpretation** (March 2022, <u>ATL-PHYS-PUB-2022-019</u>)

SMEFT

- $H \rightarrow \gamma \gamma$ differential cross-section (Feb 2022, JHEP 08 (2022) 027)
- $H \rightarrow \gamma \gamma$ **STXS** with EFT interpretation (July 2022, <u>HIGG-2020-16</u>)

combinations with increasing number of input analyses

- STXS Higgs combination with EFT interpretation (Nov 2021, ATLAS-CONF-2021-053)
- Higgs + EW + precision observables SMEFT global fit (July 2022, ATL-PHYS-PUB-2022-037)

Di-Higgs $b\bar{b}\tau\tau + b\bar{b}\gamma\gamma$ HEFT interpretation

ATL-PHYS-PUB-2022-019

 c_{tth}

 c_{tth}

g uuuuuu

g uuuuu

g uuuuuu

g uuuuuu

oduction

SM-like

- HEFT interpretation of di-Higgs^{*} in $b\bar{b}\tau\tau$ and $b\bar{b}\gamma\gamma$ final states + combination
 - $b\bar{b} \tau \tau$: template fit to NN and BDT, $b\bar{b}\gamma\gamma$: unbinned fit to $m_{\gamma\gamma}$ across multiple categories
 - ▶ *m*_{HH} based reweighting of SM HH sample, limits also set on 7 HEFT benchmark models (backup)
 - limits on HEFT Wilson coefficients c_{gghh} and c_{tthh} from $b\bar{b}\tau\tau + b\bar{b}\gamma\gamma$ combination
 - <u>ATLAS-CONF-2021-052</u>: c_{hhh} obs. (exp.) limit : $-1.0 < c_{hhh} < 6.6$ ($-1.2 < c_{hhh} < 7.2$)

more $H \rightarrow \gamma \gamma$ results: <u>Ruggero Turra's talk</u>

$H \rightarrow \gamma \gamma$ differential cross-section

• SMEFT interpretation of $H \rightarrow \gamma \gamma$ differential cross-section measurement

- simultaneous fit to five measured differential distributions: $p_T^{\gamma\gamma}$, N_{jets} , m_{jj} , $\Delta \Phi_{jj}$, p_T^{j1} (covariance matrix via bootstrapping)
- ▶ 8 Wilson coefficients measured (one at a time) in Warsaw basis
 - → c_{HG} , c_{HG} scale ggF, c_{HW} , c_{HB} , c_{HWB} (+ CP-odd versions) affect mostly $H \rightarrow \gamma \gamma$ rate and VBF, VH

JHEP 08 (2022) 027

SMEFT interpretation of 33-bin STXS

measurement

- targeting different production modes and binned in $p_T^H, m_{jj}, N_{jets}, p_T^V$
- fitting STXS bins with Higgs processes parameterized by Wilson coefficients
- ▶ affected by 34 Wilson coefficients in

Warsaw basis

• Left: relative impact per STXS bin of

most relevant SMEFT operators

- SMEFT measurement results (one Wilson coefficient at a time)
 - difference between linear and linear+quadratic parameterization indicate potential impact of higher-order terms
 - especially for parameters sensitive to high p_T^H in ttH / ggF (e.g. c_G) and high p_T^V in VH (e.g. $c_{Ha}^{(1)}$)
 - simultaneous fit of 12 linear combinations of Wilson coefficients also performed (backup)

Higgs combination STXS interpretation

more combination results: Paolo Francavilla's talk

- SMEFT interpretation of statistical combination
 - of many Higgs analyses
 - signal strength per STXS bin parameterized as
 - function of Wilson coefficients

analyses used in EFT interpretation

*: new or updated wrt. previous combination (ATLAS-CONF-2020-053)

Decay channel	Production modes	Reference
H→γγ	ggF, <mark>VBF</mark> , VH, ttH/tH	ATLAS-CONF-2020-026
$H \to ZZ^{\bigstar} \to 4I$	ggF, VBF, VH, ttH	<u>Eur. Phys. J. C 80 (2020) 957</u>
$H \mathop{\rightarrow} WW {\color{red} *}$	ggF*, VBF*	ATLAS-CONF-2021-014
H→ττ	ggF*, <mark>VB</mark> F*, VH*, ttH*	ATLAS-CONF-2021-044
H→bb	VBF*, VH*, ttH*	<u>VBF</u> , VH: <u>1</u> , <u>2</u> , <u>3</u> , <u>ttH</u>

Higgs combination STXS interpretation

• Principal component analysis to identify linear combinations of Wilson coefficients to which analysis is sensitive

• 3 coefficients and 10 linear combinations measured simultaneously ($p_{SM} = 59\%$)

-0.02 -0.05 -0.02

aaF. ttH

0.04

-0.02 -0.05 -0.02 -0.04 -0.01

0.88 0.13 0.03 0.07 0.04

reduced correlations and up to 70% better constraints than previous iteration

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$, 139 fb⁻¹

0.83 0.55

new addition via VBF, $VH(b\bar{b})$

new addition via $H \rightarrow \tau \tau$

-0.26 0.87 -0.42

0.24 -0.37 -0.9

 \sim

 \sim

E

0.84 -0.27 0.47

-0.31

0.43 0.17

 $VH(b\bar{b})$

-0.62

 $C_{Hq}^{(3)}$

С_{dH} C_{eH}

 $c^{[1]}_{HI^{(1)}He}$

 $c^{[1]}_{HI^{(3)}II'}$

 $c^{[1]}_{Hu,Hd,Hq^{(1)}}$

 $c_{Hu,Hd,Ha^{(1)}}^{[2]}$

 $c_{HG,uG,uH}^{[1]}$

 $c_{HG,uG,uH}^{[2]}$

 $c_{top}^{[1]}$

c^[1] HW,HB,HWB,HDD,uW,uB,W

c^[2] HW.HB.HWB,HDD,uW,uB,W

c^[3] HW.HB.HWB,HDD,uW,uB,W

results (using linear model)

measured parameters

Global SMEFT fit: Higgs + EW + EWPO

First ATLAS global EFT interpretation

- ATLAS Higgs STXS measurement (ATLAS-CONF-2021-053)
- ATLAS differential cross-section measurements of weak boson production (ATL-PHYS-PUB-2021-022)
 - unfolded fiducial cross-sections: $WW(p_T^{l1})$, $WZ(m_T^{WZ})$, $4\ell(m_{Z2})$, VBF $Z(\Delta\Phi_{jj})$
- LEP + SLC electroweak precision observables (EWPO) (Phys. Rept. 427 (2006) 257), 8 observables included

LEP/SLC EWPO: $\Gamma_{Z}, \sigma_{had}^{0}, R_{\ell}^{0}, A_{FB}^{0,l}$ $R_{b}^{0}, R_{c}^{0}, A_{FB}^{0,b}, A_{FB}^{0,c}$ with $\sigma_{had}^{0} = \frac{12\pi}{m_{Z}^{2}} \frac{\Gamma_{ee}\Gamma_{had}}{\Gamma_{Z}^{2}}$ $R_{\ell}^{0} = \frac{\Gamma_{had}}{\Gamma_{\ell\ell}}, R_{q}^{0} = \frac{\Gamma_{qq}}{\Gamma_{had}}$ $A_{FB} = \frac{N_{F} - N_{B}}{N_{T} + N_{P}}$

Measurement setup

- overlap removed between ATLAS Higgs and EW inputs
- assuming flavor symmetry between first two quark generations and all three lepton generations
- PCA to identify 28 linear combinations of c_i
- combination also with only ATLAS inputs (backup)

Summary

• Growing number of Higgs EFT interpretations performed by ATLAS

- examples shown in both HEFT and SMEFT frameworks
- results consistent with the Standard Model observed so far

• Combinations of measurements allow probing increasingly large number of operators simultaneously

• rotations performed from Warsaw basis to linear combinations of operators with sensitivity

• First global ATLAS EFT interpretation of ATLAS Higgs + EW results + precision observables

• includes simultaneous measurement of 28 linear combinations of Wilson coefficients

Backup

ATL-PHYS-PUB-2022-019

Di-Higgs $b\bar{b}\tau\tau + b\bar{b}\gamma\gamma$ HEFT interpretation

• Definition and results for seven benchmark models

Benchmark model	c_{hhh}	c_{tth}	c_{ggh}	c_{gghh}	c_{tthh}
SM	1	1	0	0	0
BM 1	3.94	0.94	1/2	1/3	-1/3
BM 2	6.84	0.61	0.0	-1/3	1/3
BM 3	2.21	1.05	1/2	1/2	-1/3
BM 4	2.79	0.61	-1/2	1/6	1/3
BM 5	3.95	1.17	1/6	-1/2	-1/3
BM 6	5.68	0.83	-1/2	1/3	1/3
BM 7	-0.10	0.94	1/6	-1/6	1

particle-level distributions for benchmark models

- Results for Wilson coefficient measurements
- Effects of operators when considering linear and quadratic terms

Coefficient	95% CL, interference-only terms	95% CL, interference and quadratic terms
c_{HG}	$[-6.1, 11.0] \times 10^{-3}$	$[-6.5, 10.2] \times 10^{-3}$
$c_{H\tilde{G}}$	[-0.12, 0.23]	$[-3.1, 3.5] \times 10^{-2}$
c _{HW}	$[-1.9, 0.9] \times 10^{-2}$	$[-1.8, 1.0] \times 10^{-2} \cup [0.28, 0.30]$
$c_{H\widetilde{W}}$	[-10.2, 5.2]	$[-7.3, 7.3] \times 10^{-2}$
C _{HB}	$[-5.8, 2.8] \times 10^{-3}$	$[-5.5, 3.0] \times 10^{-3} \cup [8.4, 9.3] \times 10^{-2}$
$c_{H\tilde{B}}$	$[-21.8, 5.7] \times 10^2$	$[-2.3, 2.3] \times 10^{-2}$
C _{HWB}	$[-5.2, 10.7] \times 10^{-3}$	$[-0.17, -0.15] \cup [-5.5, 9.8] \times 10^{-3}$
$c_{H\widetilde{W}B}$	$[-2.5, 4.0] \times 10^2$	$[-4.0, 4.0] \times 10^{-2}$

• 68% and 95% confidence level limits for combinations of two Wilson coefficients

Statistical correlations obtained via bootstrapping

EV10

EV11

EV12

-20

-10

Simultaneous measurement of 12 linear combinations of Wilson coefficients

terms not being considered in PCA

identified via PCA (linear model + Gaussian approximation)

ATLAS √s=13 TeV 139fb⁻¹; H→yy

non-zero off-diagonal values due to difference between observed/expected data and Gaussian approximation

.

0.48+6.7

-5.6^{+9.4}

2.6^{+12.0}

20

-13.0

0.42+0.46

0.045+0.47

1.2+0.81

30

- Profile likelihood scans over individual EVs
 - two degenerate minima for EV1, partly lifted for observed data due to small differences to SM expectation

• Full set of results for Wilson coefficients within $|c_i| \le 20$ validity range

			Obse	erved				Exp	ected			Observed						Expected			
Parameter		linear lin			near+quadra	atic	lir	linear		quadratic	Parameter		linear		linear+quadratic			lin	near	linear+o	quadratic
	Value	Uncertainty		Value	Uncertainty		Uncertainty		Uncertainty			Value	Unce	Uncertainty		Uncertainty		Uncertainty		Uncertainty	
	ruide	68% CL	95% CL	- value	68% CL	95% CL	68% CL	95% CL	68% CL	95% CL		vulue	68% CL	95% CL	- varae	68% CL	95% CL	68% CL	95% CL	68% CL	95% CL
c _{HW}	-0.0035	+0.0071	+0.014	-0.0034	+0.0071	+0.014	+0.0070	+0.013	+0.0072	+0.014	$c_{H\square}$	0.68	+1.5	+3.1	0.63	+1.4	+2.7	+1.5	+3.0	+1.4	+2.8
C _{HB}	-0.0011	+0.0023 -0.0025	+0.0044 -0.0050	-0.0011	+0.0023	+0.0046	+0.0022 -0.0024	+0.0043 -0.0049	+0.0023 -0.0023	+0.0046	c _{HD}	-0.21	+0.42 -0.44	+0.79 -0.91	-0.21	+0.42 -0.45	+0.79 -0.93	+0.41 -0.43	+0.77 -0.88	+0.40 -0.43	+0.76 -0.89
c_{HWB}	0.0020	+0.0044 -0.0042	+0.0090 -0.0079	0.0019	+0.0042 -0.0041	+0.0083 -0.0081	+0.0043 -0.0041	+0.0088 -0.0077	+0.0042 -0.0042	+0.0083 -0.0082	$c_{aa}^{(3)}$	0.72	+3.4	+7.3	-0.20	+0.55	+0.69	+3.2	+6.8	+0.29	+0.43
c_{HG}	0.0011	+0.0030 -0.0028	+0.0062 -0.0053	0.0011	+0.0029 -0.0028	+0.0059 -0.0055	+0.0030 -0.0027	+0.0061 -0.0052	+0.0029 -0.0028	+0.0059 -0.0054	$c_{aa}^{(3)}$	0.042	-2.8 +0.37 -0.28	-5.0 +0.83 -0.50	-0.30	+0.52	-0.32 +0.67 -0.34	+0.38	-4.7 +0.84 -0.49	+0.21	-0.46 +0.36 -0.60
c_W	-0.047	+0.098	+0.19 -0.21	-0.047	+0.098	+0.19 -0.21	+0.096	+0.18 -0.21	+0.096	+0.18 -0.21	$c_{qq}^{(1)}$	2.0	+14	-	-0.20	+0.69	+0.90	+14	-	+0.44	+0.67
CG	0.32	-1.2	-2.0	0.077	-0.30	-0.40	-1.1	-1.9	-0.20	-0.30	$c_{qq}^{(1)'}$	0.097	+0.79 -0.60	+1.7 -1.0	-0.50	+0.92 -0.31	+1.2 -0.57	+0.79 -0.61	+1.8 -1.0	+0.39 -0.73	+0.66
c_{uW}	-0.039	+0.080 -0.087	+0.15 -0.18	-0.039	+0.080 -0.087	+0.15 -0.18	+0.079 -0.083	+0.15 -0.17	+0.079 -0.083	+0.15 -0.17	c'_{ll}	0.30	+0.53 -0.56	+1.1 -1.0	0.30	+0.52 -0.56	+1.1 -1.0	+0.55 -0.51	+1.1 -0.98	+0.54 -0.51	+1.1 -0.99
c_{uB}	-0.021	+0.043 -0.046	+0.082 -0.094	-0.021	+0.043 -0.046	+0.082 -0.094	+0.042 -0.045	+0.080 -0.092	+0.042 -0.045	+0.080 -0.092	c _{uu}	1.4	+13 -9.9	-	-0.25	+0.85 -0.37	+1.1 -0.64	+13 -9.9	-	+0.53 -0.56	+0.81 -0.84
c_{uG}	0.030	+0.078	+0.16 -0.14	0.030	+0.077 -0.078	+0.16 -0.15	+0.079 -0.074	+0.16 -0.14	+0.078 -0.075	+0.16 -0.14	c'_{uu}	0.098	+0.80 -0.61	+1.8 -1.1	-0.50	+0.92 -0.31	+1.2 -0.57	+0.81 -0.61	+1.8 -1.1	+0.39 -0.72	+0.66
c_{uH}	-0.29	+1.4	+2.7	-0.30	+1.4	+2.6	+1.4	+2.7	+1.4	+2.5	$c_{qu}^{(1)}$	-	-	-	-0.30	+1.1 -0.48	+1.4 -0.81	-	-	+0.68 -0.70	+1.0
C_{dH}	0.63	+1.4 -1.3	+2.9 -2.5	0.61	+1.3	+2.5	+1.4	+2.8 -2.4	+1.3	+2.5	$c_{qu}^{(8)}$	0.15	+1.3 -0.97	+2.8	-1.8	+2.6	+3.3	+1.3 -0.97	+2.8 -1.7	+0.84	+1.5
c _{eH}	5.8	+13 -12	-	1.9	+5.6 -5.7	+8.9 -8.9	+13 -12	-	+9.1 -5.2	+12 -8.4	$c_{qd}^{(1)}$	-	-	-	0.75	+0.94 -2.4	+1.7	-	-	+1.5	+2.3
$c_{Hq}^{(3)}$	-0.027	+0.091 -0.081	+0.19 -0.15	-0.037	+0.096 -0.21	+0.17 -0.34	+0.10 -0.089	+0.20 -0.17	+0.085	+0.16 -0.29	$c_{qd}^{(8)}$	0.53	+5.5 -4.3	+12 -7.5	-2.3	+4.8 -2.3	+6.4	+5.6 -4.3	+12 -7.5	+2.4 -4.1	+4.0
$c_{Ha}^{(1)}$	1.9	+1.7 -2.0	+3.1	0.029	+0.20	+0.35	+2.0	+3.6	+0.30	+0.44	$c_{ud}^{(1)}$	-	-	-	0.75	+0.93	+1.7	-	-	+1.5	+2.3
$c_{Hl}^{(3)}$	-0.15	+0.28 -0.28	+0.52 -0.58	-0.15	+0.28 -0.28	+0.52 -0.58	+0.26 -0.28	+0.50 -0.57	+0.26 -0.28	+0.50 -0.57	$c_{ud}^{(8)}$	0.53	+5.5 -4.3	-7.5	-2.5	+5.1 -2.0	-3.6	+5.6 -4.4	-7.6	+2.4 -4.1	+4.0 -5.7
$c_{Hl}^{(1)}$	-	-	-	4.4	+6.8 -6.9	+12 -12	+13 -15	-	+16 -7.8	-											
c_{Hu}	-0.97	+0.79 -0.67	+1.7 -1.2	-0.14	+0.30 -0.24	+0.51 -0.41	+0.96 -0.82	+2.0 -1.5	+0.32 -0.43	+0.49 -0.61											
c_{Hd}	3.4	+2.2 -2.6	+4.0	0.070	+0.33 -0.36	+0.55 -0.60	+2.7	+4.9 -6.5	+0.51 -0.44	+0.73 -0.67											

Higgs combination STXS interpretation

• Observed correlations between linear combinations of Wilson coefficients & list of coefficients and operators

• $c_{H\square}$ acts as normalization in all bins and is thus excluded from fit

	ΔΤΙ		Droli	min	arv		۱	<i>s</i> =	13 T	eV, 13	9 fb⁻¹	l				
	<i>Л/L</i>		101		ary r	т _н =	- 12	5.09	Ge'	V, <i>y</i> _ ·	< 2.5		Wilson coefficient	Operator	Wilson coefficient	Operator
C ⁽³) 1 0	12 -0.0	9 –0.08	3 –0.14	-0.43	-0.03 -	-0.25 -	0.66 0	.28 -0.	<mark>11</mark> –0.02 –0.0	03	$^{1}\Sigma$	$c_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	c_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$
C _{dl}	, 0.12	1 0.50	00.30	0-0.73	-0.05	0.02 -	-0.10 (0.06	.15 -0.	52 -0.10 -0.0	09 -	<u>ک</u> 8.0	c_{HDD}	$\left(H^{\dagger}D^{\mu}H ight)^{*}\left(H^{\dagger}D_{\mu}H ight)$	c_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{H} W^I_{\mu\nu}$
C _{el}	-0.09 0	50 1	-0.39	9 –0.37	0.01	0.02 -	-0.20 (0.17 0	.05 0.0	2 0.16 0.0	9 _	-0.6	c_{HG}	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$	C_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \bar{H} B_{\mu\nu}$
c ^[1]	-0.08 -0	.30 -0.3	9 1	0.09	0.45	-0.43	0.69 (0.30 -0	.49 -0.3	20 -0.12 -0.0	03	0.0	c_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	c'_{ll}	$(l_p \gamma_\mu l_t)(l_r \gamma^\mu l_s)$
с ^[1]	-0.14-0	73 -0.3	7 0 09	1	0 17	-0 11 -	-0.13 (0.03 -0	31 0 1	0 -0.04 0.0	3	-0.4	C _{HW}	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$ $H^{\dagger}\sigma^{I}H W^{I}D^{\mu\nu}$	$C_{qq}^{(3)}$	$(q_p \gamma_\mu q_t)(q_r \gamma^\mu q_s)$
с ^[1]	_0.43_0	05 0.0	1 0.45	0.17	1	_0.72	0.62 (91_0	24 <u>-0 07</u> 0 0	3 –	0.2	CHWB	$(H^{\dagger}H)(\bar{I}_{\mu\nu}e_{\mu}H)$	\mathcal{C}_{qq}	$(q_p \gamma_\mu \tau q_r)(q_s \gamma^\mu \tau q_t)$ $(\bar{a}_r \gamma_r a_t)(\bar{a}_r \gamma^\mu a_r)$
^C Hd,Hq ⁽¹⁾ ,Hi	0.70	02 0.0	0.43	0.17	0.72	1	0.02		80 0.2	7 0.08 0.0	0 -	0	Син	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$ $(H^{\dagger}H)(\bar{q}_{n}u_{r}\widetilde{H})$	c_{qq} $c_{aa}^{(31)}$	$(\bar{a}_p\gamma_\mu\tau^I a_t)(\bar{a}_r\gamma^\mu\tau^I a_s)$
Hd,Hq ⁽¹⁾ ,H	0.05 0	10 0.02	0.000	0.10	-0.72	0.50	-0.32 -	0.44 0				0	C_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}\widetilde{H})$	$C_{\mu\mu}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$
C HW,HB,HWB,HDD,uB,uW,W	, -0.25 -0	.10 -0.2	0 0.69	-0.13	0.62	-0.52	0.50	J.59 –(.64 -0.	19 -0.15 -0.0		-0.2	$\mathcal{C}_{\mu\nu}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$	$C_{\mu\mu}^{(1)}$	$(\bar{u}_p \gamma_\mu u_t) (\bar{u}_r \gamma^\mu u_s)$
LIN HW, HB, HWB, HDD, UB, UW, W	-0.66 0	06 0.17	0.30	0.03	0.74	-0.44	0.59	1 -0	.76 – 0.		_	-0.4	$C_{III}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	$C_{au}^{(1)}$	$(\bar{q}_p \gamma_\mu q_t) (\bar{u}_r \gamma^\mu u_s)$
C ^{···} HW,HB,HWB,HDD,uB,uW,W [1]	0.28 0	15 0.05	5 -0.49	9 -0.31	-0.91	0.80 -	-0.64 -	0.76	1 0.2	4 0.14 0.0	2	0.6	ні С _{Не}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	$C^{(8)}$,	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$
C ¹⁻¹ HG,uG,uF	, -0.11-0	.52 0.02	2 -0.20	0 0.10	-0.24	0.27 -	-0.19 -	0.12 0	.24 1	0.23 0.0	9 -	-0.0		$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{a}_{\mu}\gamma^{\mu}a_{\mu})$	ua C ⁽⁸⁾	$(\bar{a}_{\rm p}\gamma_{\mu}T^{A}a_{\rm r})(\bar{u}_{\rm s}\gamma^{\mu}T^{A}u_{\rm t})$
C ^{IEJ} HG,uG,uF	-0.02-0	.10 0.16	5 -0.12	2-0.04	-0.07	0.08 -	-0.15 -	0.07 0	.14 0.2	3 1 0.8	6 _	-0.8	$c^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}^{I}H)(\bar{a} \tau^{I}\gamma^{\mu}a)$	c ⁽⁸⁾	$(\bar{q}p,\mu^{2},q)(\bar{d},\gamma^{\mu}T^{A}d)$
$C_{top}^{(1)}$, <mark>-0.03 -0</mark>	.09 0.09	9 -0.03	3 0.03	0.03	0.00 -	-0.03 (0.00 0	.02 0.0	9 0.86 1		_1	c_{Hq}	$(II^{\dagger}: \overleftrightarrow{p} II)(q_p, \gamma, q_r)$	Cqd	$(q_p)_{\mu} (q_r)(u_s) = u_t$
	$c_{Hq}^{(3)}$	C ^H C	£ ۳	ון נו ^{פי} ור	ηH'.	Р Н'	W,W	W,W	W,W	GuH C	top		c_{Hu}	$(H^{\dagger}i D_{\mu}H)(u_{p}\gamma^{\mu}u_{r})$	c_W	$\epsilon^{\mu\nu}W_{\mu}^{\nu}W_{\nu}^{\prime}W_{\rho}^{\prime}$
			U U	'1] 4d,Hq	'2] '4, Hq	lu,8u,0 lu,8u,0		l'IJ	[1] HG,uc HG,uc			CHd	$(H'i D_{\mu}H)(d_p\gamma^{\mu}d_r)$	c_G	$f^{ABC}G^{A\nu}_{\mu}G^{\mu\nu}_{\nu}G^{\mu\nu}_{\rho}$	
					5	5	B,HDı	B,HDI	B,HDI	0						
							IB,HW	IB,HW	IB,HW							
							HWH	HW.F.	HWH							

Global SMEFT fit: Higgs + EW + EWPO

ATLAS Preliminary \sqrt{s} = 13 TeV,36.1-139 fb⁻¹ $m_h = 125.09 \text{ GeV}, |y_h| < 2.5$ c_{HG}, c^[1] HVV,Vff 0.8× 0.23 0.00 'μγν,ν# CHVV, Vfi 00 000 00 HVV, -0.6 HVV -0.4c^[6] HVV.V CHVV,V -0.2c`_{HVV,V} -0CHVV, -0.2 HYY, _ нүү, C'HVV V -0.4 CUH dH F -0.6 [1.3] CHVY, -0.8 _ V.VII [1] 2021 2021 6 49 6 49 6 8 с^[13] с¹⁴⁴, vir ^[14] с¹⁴⁴ с₆₄ с₆₄ [1] HVV.VII BJ HVV.VII BJ HVV.VII BJ HVV.VII HVV.VII HVV.VII [6] HVV, VII [7] HVV, VII HVV, VII

Global SMEFT fit: Higgs + EW + EWPO

Examples of operators and diagrams

• Examples of processes modified per Wilson coefficient, taken from <u>ATLAS-CONF-2020-053</u>

Coefficient	Operator	Example process					0	
C a	$(\bar{a}, \sigma^{\mu\nu}T^{A}a)\widetilde{H}C^{A}$	$g \mathfrak{m} \leftarrow \mathfrak{t}^H$	Coefficient	Operator	Example process	Coefficient	Operator	Example process
CuG	$(q_p 0 \cdot 1 \cdot u_r) \Pi O_{\mu\nu}$	$g \xrightarrow{t} t$		Operator	$q \rightarrow \rightarrow q$	$c_{Hl}^{\scriptscriptstyle (1)}$	$(H^\dagger i\overleftrightarrow{D}_\mu H)(\bar{l}_p\gamma^\mu l_r)$	$q \searrow Z \not\leftarrow \ell$
C_{nW}	$(\bar{q}_n \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W^I_{\mu\nu}$		c_{HDD}	$\left(H^{\dagger}D^{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$	$Z > \dots H$			q × `` H
C_{uB}	$(\bar{q}_{n}\sigma^{\mu\nu}u_{r})\widetilde{H}B_{\mu\nu}$	q $\sqrt{\overline{t}}$ H			$q \xrightarrow{L \geqslant} q$	$c_{Hl}^{\scriptscriptstyle (3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	$q \longrightarrow W \not\leftarrow \ell$
	$(\bar{q}, \gamma, q_i)(\bar{q}, \gamma^{\mu}q_i)$		CHC	$H^{\dagger}H G^A G^{A\mu\nu}$	^g T		•	q 🗡 ``H
Cqq	$(q_p \uparrow \mu q_t)(q_r \uparrow q_s)$		GHG	$\mu \nu \sigma$		Сне	$(H^{\dagger}i\overleftrightarrow{D},H)(\bar{e}_{r}\gamma^{\mu}e_{r})$	$q \sim Z \neq e_{e}$
C_{qq}	$(q_p \gamma_\mu \tau \ q_r)(q_s \gamma' \tau \ q_t)$				$q \rightarrow \rightarrow q$	· iic	$(\mu)(\mu)(\mu)$	$q \swarrow {}^{\circ} \overset{\circ}{\searrow} \overset{\circ}{H}$
c_{qq}	$(\bar{q}_p\gamma_\mu q_t)(\bar{q}_r\gamma^\mu q_s)$		c_{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$	Z > H			$a, Z_{\kappa \ell}$
$c_{qq}^{\scriptscriptstyle{(31)}}$	$(\bar{q}_p \gamma_\mu \tau^I q_t) (\bar{q}_r \gamma^\mu \tau^I q_s)$				$q \xrightarrow{Z \leq} q$	$c_{Hq}^{\scriptscriptstyle (1)}$	$(H^{\dagger}iD_{\mu}H)(\bar{q}_p\gamma^{\mu}q_r)$	" Jose l
c_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	q t H	-	$\mathbf{u}^{\dagger} \mathbf{u} \mathbf{w}^{I} \mathbf{w}^{I} \mathbf{w}^{I}$	$q \xrightarrow{q} q$			
$c_{uu}^{\scriptscriptstyle (1)}$	$(\bar{u}_p \gamma_\mu u_t)(\bar{u}_r \gamma^\mu u_s)$	$q \qquad t^{-t}$	c_{HW}	$\Pi \Pi W_{\mu\nu} W^{\mu\nu}$	$a \xrightarrow{W \leq a} a$	$c_{Hq}^{_{(3)}}$	$(H^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	$q \sim \mathcal{M} \sim \frac{\ell}{\nu}$
$c_{qu}^{\scriptscriptstyle (1)}$	$(\bar{q}_p \gamma_\mu q_t)(\bar{u}_r \gamma^\mu u_s)$				$\xrightarrow{q} \xrightarrow{q} q$			q 🗡 🔭 H
$c_{ud}^{\scriptscriptstyle (8)}$	$(\bar{u}_p\gamma_\mu T^A u_r)(\bar{d}_s\gamma^\mu T^A d_t)$		c_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	γ	c_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{n}\gamma^{\mu}u_{r})$	u
$c_{qu}^{\scriptscriptstyle (8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$				$\xrightarrow{q \xrightarrow{r} \leftarrow q}_{\rho}$	11.0		
$c_{qd}^{\scriptscriptstyle (8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$		c_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	Н 🕻	Cut	$(H^{\dagger}i\overleftrightarrow{D} H)(\bar{d} \gamma^{\mu}d)$	$d \sum_{k} Z \ell_{\ell}$
c_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	$g \xrightarrow{g} f \xrightarrow{t} f$			<u></u>		$(\mu \ \nu \ \mu \ \mu) (\alpha p \ \nu \ \alpha r)$	