

Higgs EFTs and CP violation session - the three summary slides

Ram Krishna Sharma, IHEP Alexander Held, University of Wisconsin - Madison Andrea Cardini, DESY - Hamburg Ricardo Jose Morais Silva Gonçalo, LIP - Lisbon Anne-Catherine Le Bihan, IPHC - Strasbourg

Higgs Hunting 2022 - 13th of September 2022

Higgs Effective Field Theories - summary

Growing number of EFT interpretations: from single final state interpretation to STXS to global fit w/ EW observables.

Higgs Effective Field Theories - a few plots

EFT - di-Higgs searches

EFTs to modelise the non-SM di-Higgs diagrams.

bbττ + bbγγ combination: Cgghh [-0.3, 04] obs. ([-0.3, 0.3] exp.) Ctthh [-0.2, 0.6] obs. and exp., <u>ATL-PHYS-PUB-2022-019</u>

HEFT operators used, 7 benchmarks.

Unlike in SMEFT, the couplings affect the Higgs boson pairs and not single Higgs bosons \rightarrow suitable for HH interpretation.

bbbb Phys. Rev. Lett. 129 (2022) 081802 and WWWW, WWττ ττττ in multi-lepton final states CMS-HIG-21-002 sub. to JHEP: (κ_{λ} , κ_{t} , C2(ttHH), C2g(ggHH), Cg(ggHH)), 12 and 20 benchmark points, -1.05 < C2 < 1.48 obs. (-0.96 < C2 < 1.37 exp.).

CP violation - HVV couplings

CMS: H \rightarrow ZZ \rightarrow 4I: off-shell Higgs production can provide additional sensitivity \rightarrow CP-odd anomalous coupling constrained to [-4.6,11] × 10⁻⁴ at 95% CL.

ATLAS: VBF, $H \rightarrow \gamma \gamma$ Optimal observable with reconstructed ME from Higgs and VBF jets momenta

 $C_{H\tilde{W}} \in [-0.55-1.02]$ at 95%CL (no add. sensitivity when add. quadratic term) Combination with H $\rightarrow \tau \tau$

CMS: H→ττ, VFB and ggH with 2 jets - azimuthal angle between 2 jets / MELA obs.

Combination with H \rightarrow 4l and H \rightarrow yy: pure CP-odd coupling to gluons is excluded at 2.4 σ

arXiv:2202.069230

CERN-EP-2022-134

CP violation - tau and top Yukawa couplings

Generalised Yukawa coupling, CP violation can occur at tree level

 $L_Y = -\frac{m_l \phi}{\nu} (\kappa_l \overline{\psi_l} \psi_l + \tilde{\kappa}_l \overline{\psi_l} i \gamma_5 \psi_l)$

 $f_{cp}^{Hll} = \frac{|\tilde{\kappa}_l|^2}{|\kappa_l|^2 + |\tilde{\kappa}_l|^2} = \sin^2(\alpha^{Hll})$

Angle between tau decay planes gives access to α (HII) Several techniques depending on τ decay mode μ^{\pm} , e^{\pm} , π^{\pm} , ρ^{\pm} , $a_1^{1pr,3pr}$

Top Yukawa CP structure can be probed in $t\bar{t}H, H \rightarrow 4l, \gamma\gamma$ and ggH loop with top quark dominance

CMS → pure CP-odd hypothesis excl. at 3.2 <u>Phys. Rev. D 104 (2021) 052004</u>

- ATLAS \rightarrow pure CP-odd hypothesis excl. at 3.9 σ (ttH, $\gamma\gamma$) <u>Phys. Rev. lett. 125 (2020) 061802</u>
 - → pure CP-odd hypothesis excl. at 1.2σ (ttH,bb) ATLAS-CONF-2022-016

ATLAS \rightarrow pure CP-odd hypothesis excl. at 3.4 σ (2.1 σ) (ATLAS-CONF-2022-032) $\rightarrow \alpha$ (H $\tau\tau$) = 9 ± 16° (VBF + ggH boosted pT>100 GeV)