CP violation results in the ATLAS experiment

R. Gonçalo (U.Coimbra / LIP) on behalf of the ATLAS Collaboration Higgs Hunting, Orsay-Paris, Sep.12-14 2022

CP Violation in the Higgs Sector?

Sakharov conditions for a matter-dominated universe require CP violation⁽¹⁾

- Some CP-violating processes are well known and measured:
 - Described with complex phases in CKM-matrix quark mixing
 - Maybe in PNMS-matrix as well neutrino mixing
- But insufficient, by orders of magnitude, to explain baryon asymmetry⁽¹⁾
- CP violation in Higgs-sector?
 - Possible in some models with extended Higgs sector (e.g. some 2HDMs)
 - Mixing of scalar (CP-even) and pseudo-scalar (CP-odd) Higgs states would make CP violation an enticing possibility
- What do we know about Higgs CP properties?
 - In the SM, Higgs scalar is a CP eigenstate with J^{CP} = 0⁺⁺
 - Pure $J^P = 0^-$ hypothesis for observed Higgs boson was ruled out in Run $1^{(2)}$
 - But hypothesis of a CP-odd admixture is far from being constrained experimentally!

⁽¹⁾ See e.g. Mod.Phys.Lett.A 9 (1994) 795-810
 ⁽²⁾ See e.g. Eur.Phys.J C75 (2015) 476

•

How to search for a CP-odd admixture?

- Effect of CP-odd components on **bosonic couplings** parametrized as expansion with higher order terms suppressed by powers of scale of new physics Λ
- Could explain why a CP-odd admixture has not been seen

- Fermionic couplings are affected at tree level
- Mixing angle α between CPeven and CP-odd coupling components
- More notable for heavier fermions due to enhanced coupling

$$\mathcal{L}_{VVH} = \mathcal{L}_{VVH,SM} + \frac{1}{\Lambda^2} c \, \phi \widetilde{V}_{\mu\nu} V^{\mu\nu} + \dots$$

$$\mathcal{L}_{ffH} = \kappa'_f y_f \phi \bar{\psi}_f (\cos \alpha + i\gamma_5 \sin \alpha) \psi_f$$

Fermionic Higgs Couplings

H-top Coupling in ttH/tH production

See talk by Neelam in YSF yesterday

- Calculate CP-sensitive observables b_2 and b_4 from top-quark 3-momenta
- Use different observables in combined fit depending on region

$$b_2 = \frac{(\vec{p}_1 \times \hat{n}) \cdot (\vec{p}_2 \times \hat{n})}{|\vec{p}_1| |\vec{p}_2|} \qquad b_4$$

Channel (PSR)	Final SRs and CRs	Classification BDT selection	Fitted observable
	$CR_{no-reco}^{\geq 4j,\geq 4b}$	_	$\Delta \eta_{\ell\ell}$
Dilepton (PSR ^{$\geq 4j$, $\geq 4b$})	$CR^{\geq 4j, \geq 4b}$	BDT∈ [−1, −0.086)	b_4
	$\mathrm{SR}_1^{\geq 4j, \geq 4b}$	BDT∈ [−0.086, 0.186)	b_4
	$\operatorname{SR}_{2}^{\geq 4j, \geq 4b}$	BDT∈ [0.186, 1]	b_4
	$ $ CR ^{$\geq 6j, \geq 4b$}	BDT∈ [−1, −0.128)	b_2
ℓ + jets (PSR ^{$\geq 6j, \geq 4b$})	$\operatorname{CR}_{2}^{\geq 6j, \geq 4b}$	BDT∈ [−0.128, 0.249)	b_2
	$\mathrm{SR}^{\tilde{\geq}6j,\geq4b}$	BDT∈ [0.249, 1]	b_2
ℓ + jets (PSR _{boosted})	SR _{boosted}	BDT∈ [−0.05, 1]	Classification BDT score

Simultaneous fit in all regions

- $\mu = 0.83^{+0.30}_{-0.46}$
- $\alpha = 11^{\circ} + 55_{-77}$

Expected:

- $\mu = 1.0^{+0.25}_{-0.27}$
- $\alpha = 0^{\circ} + 49_{-50}$
- Pure CP-odd (α = 90°) disfavoured at 1.2 σ

Systematics-dominated analysis:

• Dominant uncertainties from tt+≥1b modelling: NLO matching, PS and hadronisation, flavour scheme

$$\mathcal{L}_{t\bar{t}H} = -\kappa'_t y_t \phi \bar{\psi}_t (\cos \alpha + i\gamma_5 \sin \alpha) \psi_t$$

H-top Coupling in ttH/tH production

New analysis: ttH ($H \rightarrow bb$):

- $\mu = 0.83^{+0.30}_{-0.46}$ (exp. $\mu = 1.0^{+0.25}_{-0.27}$)
- $\alpha = 11^{\circ} + 55_{-77}$ (exp. $\alpha = 0^{\circ} + 49_{-50}$)
- Pure CP-odd (α = 90°) disfavoured at 1.2 σ

Complementary to previous ttH($H \rightarrow \gamma \gamma$) analysis:

- <u>Phys. Rev. Lett. 125 (2020) 061802</u>
- Pure CP-odd (α = 90°) excluded at 3.9 σ
- Limit on $|\alpha| < 43^{\circ}$ at 95% C.L.

H-τ Coupling in inclusive production ---

- Angle between τ decay planes in H rest frame sensitive to CP mixing angle ϕ_{τ}
- Due to neutrinos, use ϕ^{*CP} angle as proxy:
 - Acoplanarity angle between τ decay planes in Zero Momentum Frame of visible decay products
- ϕ^{*CP} reconstructed with dedicated methods for semi-exclusive decay modes
 - Total branching ratio in targeted decay modes: 68%

H-τ Coupling in inclusive production

Decay channel	Decay mode combination	Method	Fraction in all τ lepton pair decays		Signal regions $m^{MMC}_{\pi} = [110, 150] \text{ GeV}$	r r	$Z \rightarrow \tau \tau$ control regions $n^{MMC}_{\tau \tau} = [60, 110] \text{ GeV}$,
$ au_{ m lep} au_{ m had}$	ℓ-1p0n ℓ-1p1n ℓ-1pXn	ΙΡ ΙΡ-ρ ΙΡ-ρ	8.1% 18.3% 7.6%	ggF	Boost_1_High Boost_1_Medium Boost_1_Low	<। <⊢-> <'	Boost_1	_1: higher purity _0: lower purity
	ℓ-3p0n 1p0n-1p0n 1p0n-1p1n	$\frac{\text{IP-}a_1}{\text{IP}}$ $\frac{\text{IP-}\rho}{\text{IP-}\rho}$	6.9% 1.3% 6.0%		Boost_0_High Boost_0_Medium Boost_0_Low	<। <⊢-> <'	Boost_0	ℓ -lpln ($\tau_{len} \tau_{had}$) /
$ au_{ m had} au_{ m had}$	1p1n-1p1n 1p0n-1pXn 1p1n-1pXn	hoIP- $ ho$ $ ho$	6.7% 2.5% 5.6%		VBF_1_High VBF_1_Medium VBF_1_Low	< <→ <	VBF_1	lpln-lpln ($ au_{had} au_{had}$)
ҮрХи	1p1n-3p0n 1 Y charged pion	<i>_{p-a1}</i> ns; X no	5.1% eutral pions		VBF_0_High VBF_0_Medium VBF_0_Low	< \ < \ < \	VBF_0 4 Z→ττ NFs	π^0 -related NPs

- 24 Signal categories and 10 Control Regions
 - VBF or Boost (ggF $p_T^H > 100 \text{ GeV}$) × 2 purity regions × High/Medium/Low sensitivity
- Angle reconstruction requires excellent performance:
 - Particle flow based τ_{had} reconstruction
 - − $\pi^0 \rightarrow \gamma \gamma$ and vertex / impact parameter reconstrucion
 - Both efficiency and purity around 80% for dominant decays

H-τ Coupling in inclusive production --- «

 $\mathcal{L}_{H\tau\tau} = -\frac{m_{\tau}}{m_{\tau}} \kappa_{\tau} (\cos \phi_{\tau} \bar{\tau} \tau + \sin \phi_{\tau} \bar{\tau} i \gamma_{5} \tau) H$

- Simultaneous fit in all regions
- Analysis leaves μ free to float agnostic with respect to rate effects
- Best fit observed: $\phi_{\tau} = 9^{\circ} \pm 16^{\circ}$ (expected: $\phi_{\tau} = 0^{\circ} \pm 28^{\circ}$)
- Pure CP-odd (α = 90°) disfavoured at 3.4 σ
- Dominant background is $Z \rightarrow \tau \tau$: constrained from Control Regions
- Statistics-dominated analysis; dominant systematic uncertainty from jet calibration

HVV Coupling in Vector Boson Fusion

- Consider effective HVV Lagrangian augmented with dimension six **CP-odd** observables
- Strength of CP violation in VBF matrix element can be described by a single parameter^(*) giving:

$$\mathcal{M} = \mathcal{M}_{\text{SM}} + \tilde{d} \cdot \mathcal{M}_{\text{CP-odd}}$$
$$|\mathcal{M}|^2 = |\mathcal{M}_{\text{SM}}|^2 + \tilde{d} \cdot 2 \operatorname{Re}(\mathcal{M}_{\text{SM}}^* \mathcal{M}_{\text{CP-odd}}) + \tilde{d}^2 \cdot |\mathcal{M}_{\text{CP-odd}}|^2$$

- Calculate LO matrix elements using 4-momenta of Higgs and VBF jets
 - Extract initial-state parton momentum fractions from jet momenta
- Use to calculate Optimal Observable (OO):
 - Expected to be symmetric with mean value of zero if no CP-violation

$$OO = \frac{2Re(\mathcal{M}_{SM}^*\mathcal{M}_{CP-odd})}{|\mathcal{M}_{SM}|^2}$$

HVV Coupling in Vector Boson Fusion

>- 🥑

- Select events with ≥ 2 photons and ≥ 2 tag jets (energy flow)
- Increase signal purity with 2 BDTs:
 - BDT_{VBF/ggF}: separate VBF signal from gluon-fusion Higgs production
 - BDTVBF/Continuum: separate VBF signal from continuum diphoton background
- Split into signal regions using BDT output: Tight-Tight; Loose-Tight; Tight-Loose
- In each OO bin extract signal yield from a fit to the di-photon mass spectrum
- Fit shape of Optimal Observable to extract the coefficient of the interference term d
 - Pure shape analysis signal normalisation is left floating in the fit to depend only on interference term

HVV Coupling in Vector Boson Fusion

- Result interpretation with \tilde{d} (HISZ EFT operator basis) but also $c_{H\tilde{W}}$ (Warsaw basis)
 - No improvement from using quadratic term sensitivity driven by interference
- Results are the strongest existing bounds on CP violation in HVV
- Combination with previous analysis of VBF $H \rightarrow \tau\tau$ (36 fb⁻¹)
 - <u>Phys. Lett. B 805 (2020) 135426</u>
 - Confidence intervals further improved

	68% (exp.)	95% (exp.)	68% (obs.)	95% (obs.)
\tilde{d} (inter. only)	[-0.027, 0.027]	[-0.055, 0.055]	[-0.011, 0.036]	[-0.032, 0.059]
\tilde{d} (inter.+quad.)	[-0.028, 0.028]	[-0.061, 0.060]	[-0.010, 0.040]	[-0.034, 0.071]
\tilde{d} from $H \to \tau \tau$	[-0.038, 0.036]	—	[-0.090, 0.035]	-
Combined \tilde{d}	[-0.022, 0.021]	[-0.046, 0.045]	[-0.012, 0.030]	[-0.034, 0.057]
$c_{H\tilde{W}}$ (inter. only)	[-0.48, 0.48]	[-0.94, 0.94]	[-0.16, 0.64]	[-0.53, 1.02]
$c_{H\tilde{W}}$ (inter.+quad.)	[-0.48, 0.48]	[-0.95, 0.95]	[-0.15, 0.67]	[-0.55, 1.07]

Higgs Hunting 2022

Summary & Outlook

- The search for a CP structure of Higgs boson couplings is being very actively pursued in ATLAS
 - Still much space for CP odd admixture, potential source for CP violation
 - Would be clear evidence for deeper theory, beyond the SM and might address fundamental question of baryon asymmetry
- Results generally in agreement with Standard Model CP-even hypothesis
- Several Run 2 measurements using 139 fb⁻¹
 - Produced about 8 M Higgs bosons in Run 2!
 - A lot to expect from Run 3 and later!
- Today: showed only latest results in this presentation:
 - H-top Coupling in ttH/tH production with H $\rightarrow \gamma\gamma$, H \rightarrow bb
 - Η-τ Coupling in VBF + hhF production
 - − HVV Coupling in VBF , $H \rightarrow \gamma \gamma$
 - More Run 2 analyses reaching results soon

Pure CP-odd ttH coupling excluded at 3.9 σ Pure CP-odd Htt coupling excluded at 3.4 σ Strongest existing bounds on \tilde{d} and $c_{H\tilde{W}}$

Backup slides

H-top Coupling in ttH/tH production

- Recent analysis with $H \rightarrow bb$ decay
 - High branching ratio, but challenging backgrounds
 - Complementary to previous ttH($H \rightarrow \gamma \gamma$) analysis
- Two channels:
 - Lepton+jets: target 1 semi-leptonic top decay dedicated boosted region targets p_T^H>200 GeV using large-R jets (R=1, m_i > 50 GeV)
 - Dilepton: target 2 semi-leptonic top decays
- Reconstruct top and Higgs candidates in regions
 - "Reconstruction" BDT selects jet combinations to build top and Higgs candidates
 - "Classification" BDT separates signal (trained on ttH) from background

See talk by Neelam in YSF yesterday

PSR: Preliminary Signal Region (before classification BDT)

≥ 6

= 3

= 3

= 3

< 3

	Dilepton	Single Lepton	
Events	$\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$	$\begin{array}{c c} \vec{t} + \geq 1b & \hline \\ \vec{t} + \geq 1b & \hline \\ \vec{t} + \geq 1c & \hline \\ \vec{t} + l & \bullet & Data \end{array}$	Bkgd+ $t\bar{t}H$ + tH (κ'_t = 0.83, α = 11° $t\bar{t}H$ + $tH^{\dagger}(\alpha$ = 90°) $t\bar{t}H$ + $tH^{\dagger}(\alpha$ = 0°) † normalised to total data yield
1			
Ratio to Bkgd.	10^{1} Bkgd+ $i\bar{t}H$ + H (K'_{1} = 0.83, α		
ی چ 2	$CR_{30,N}^{2} CR_{30,N}^{3} CR_{30,N}^{3,4} CR_{30,N}^{3,4}$	$\begin{array}{c} H\left(r_{1}^{\prime}=1,\alpha=0^{\circ}\right) \\ H\left(r_{2}^{\prime}=1,\alpha=90^{\circ}\right) \\ R_{00^{\circ}-1000}^{\prime} & CR^{24_{1},24_{0}} & SR_{2}^{14_{1},24_{0}} & SR_{2}^{14_{1},24_{0}} & CR_{14_{0},0}^{\prime} & CR_{14_{0$	1 ^{24,246} CR ^{24,246} SR ^{24,240} SR _{boo}

Dilepton

 $PSR^{\geq 4j,\geq 4b}$ $CR^{\geq 4j,3b}_{hi}$ $CR^{\geq 4j,3b}_{hi}$ $CR^{3j,3b}_{hi}$

 ≥ 4

= 3

Region

N_{jets}

 N_{b-tag}

@85%

@779

@70%

@60%

Nhoosted cand.

 ≥ 4

 ℓ + jets

= 5

< 4

 ≥ 4

PSR_{boosted}

 ≥ 4

 $\geq 2^{\dagger}$

 ≥ 1

 $PSR^{\geq 6j, \geq 4b}$ $CR^{5j, \geq 4b}_{hi}$ $CR^{5j, \geq 4b}_{hi}$

≥ 4

0

> 4

Higgs Hunting 2022

Phys. Rev. Lett. 125 (2020) 061802

H-top Coupling in ttH/tH production

- Reconstruct Leptonic or Hadronic γγ + top events
- Two BDTs to define 2D space:
 - Reject continuum background and
 - Enrich in CP-odd-like events (kinematic and angular variables)
- Simultaneous fit to m_{γγ} in 2D regions defined by BDT outputs
 - Established 5σ observation of ttH(γγ)
 - Assuming SM decay get $\mu = 1.43^{+0.33}_{-0.31}$ (stat)^{+0.17}_{-0.14} (sys)
 - Set upper limit of 12×SM for tH production
 - Pure **CP-odd** (α = 90°) excluded at **3.9** σ and $|\alpha|>43°$ at 95% C.L.
 - Statistics-dominated analysis

0.9

to 0.8

or of dr

0.6

0.5

000

Eur. Phys. J. C 82 (2022) 622

Hgg Effective Coupling

VBE × 50

- Depending on the production mode, H+2 jets probse CP violation (for ggF) or W/Zpolarization (for VBF)
- In gluon fusion:
 - Effective vertex either or top Yukawa coupling or BSM particles in loop
 - Use BDT to separate signal and background (no CP sensitivity)
 - Classify H+2jets into 4x5 categories according to $|\Delta \eta|$ and BDT score

$$\mathcal{L}_{0}^{\text{loop}} = -\frac{g_{Hgg}}{4} \left(\kappa_{gg} \cos(\alpha) G^{a}_{\mu\nu} G^{a,\mu\nu} + \kappa_{gg} \sin(\alpha) G^{a}_{\mu\nu} \tilde{G}^{a,\mu\nu} \right) H$$

 $\tan(\alpha) = 0.0 \pm 0.4 (\text{stat.}) \pm 0.3 (\text{syst.})$

- Search for changed **shapes** of differential cross sections due to CP-odd observables (2nd term)
- Or on process **rates** (cross sections) from 3rd term but other BSM scenarios can change rates

$$|\mathcal{M}|^{2} = |\mathcal{M}_{SM}|^{2} + 2 \cdot c_{i} \cdot \operatorname{Re}(\mathcal{M}_{SM}^{*}\mathcal{M}_{CP\text{-odd}}) + c_{i}^{2} \cdot |\mathcal{M}_{CP\text{-odd}}|^{2}.$$

See e.g. arXiv:2208.02338 [hep-ex], arXiv:1008.3869v3 [hep-ph], or C.Grefe, ICHEP'22