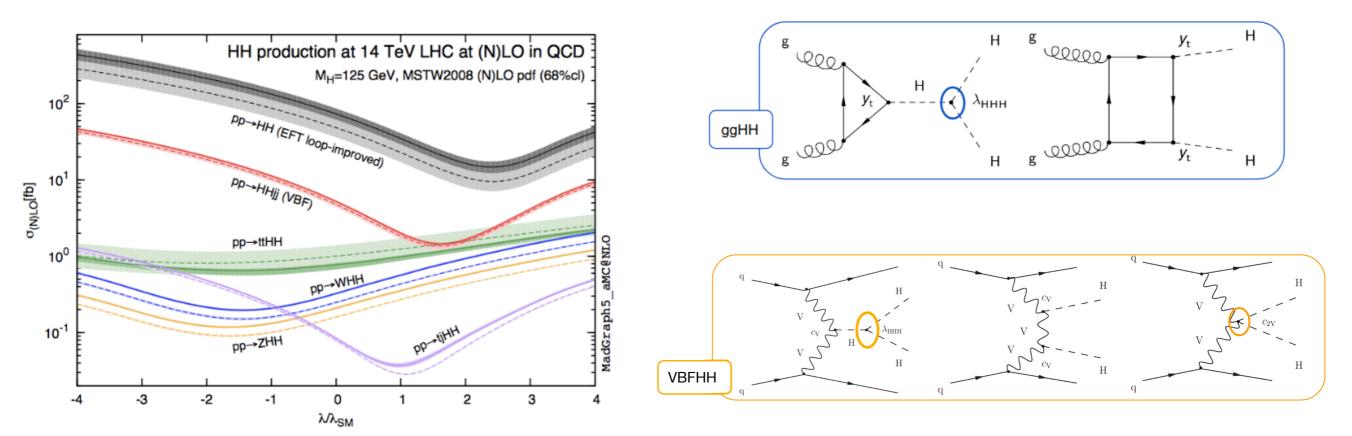

HH production at the High-Luminosity LHC with CMS

Suat Donertas

(CP3, Universite Catholique de Louvain) on behalf of CMS collaboration

Higgs Hunting 2022

September 12-14, 2022, Orsay, France

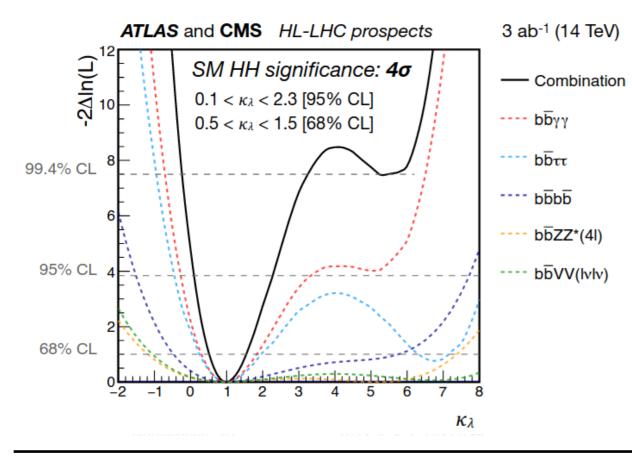


- HH production can be used to directly study Higgs boson self-coupling and Higgs potential
- Extremely challenging to measure at LHC but accessible at HL-LHC

$$V(H) = \frac{1}{2}m_H^2 H^2 + \frac{\lambda_3}{\lambda_3}\nu H^3 + \frac{1}{4}\lambda_4 H^4 \qquad \kappa_\lambda = \frac{\lambda_3}{\lambda_3^{SM}}$$

• λ_3 probed via HH production

- An objective of increasing the integrated luminosity by **a factor of 10** beyond the LHC's design value
- Detector upgrades to cope with higher pileup (200) and radiation damage
 - Installation of upgraded detectors planned to take place between 2026 and 2028


• Higgs production at HL-LHC: 170M Higgs bosons - 120k HH pairs for 3 ab-1

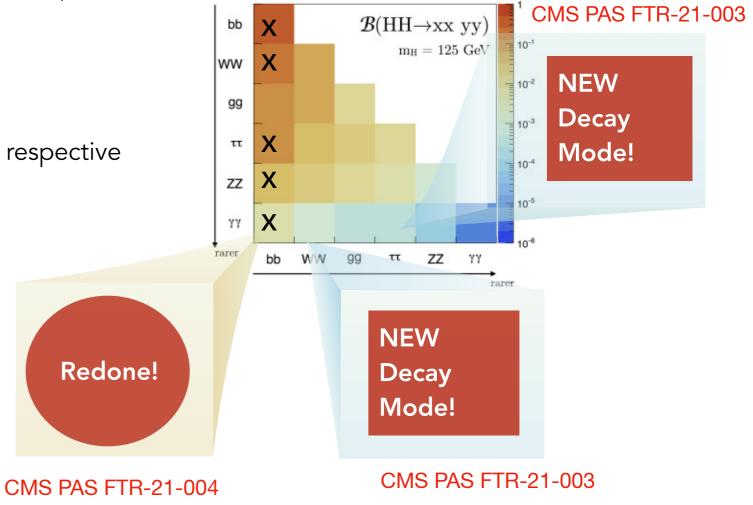
Overview of HL-LHC Studies

arXiv:1902.00134

• Yellow Report '18: Higgs Physics at the HL-LHC and HE-LHC Statistical + Systematic Statistical-only CMS ATLAS ATLAS CMS $HH \rightarrow b\bar{b}b\bar{b}$ 1.4 1.2 0.61 0.95 • Five decay channels were explored (only in ggHH $HH \rightarrow b\bar{b}\tau\tau$ 2.51.6 2.1 1.4 mode) $HH \rightarrow b\bar{b}\gamma\gamma$ 2.11.82.01.8 $HH \rightarrow b\bar{b}VV(ll\nu\nu)$ 0.59 0.56 -• HH production expected to reach 4.0σ significance with $HH \rightarrow b\bar{b}ZZ(4l)$ 0.37 0.37 -_ CMS + ATLAS combination 2.6 3.0 combined 2.83.5 Combined Combined • Accessible to Higgs self-coupling: 50% precision from 4.5 4.0 ggHH mode

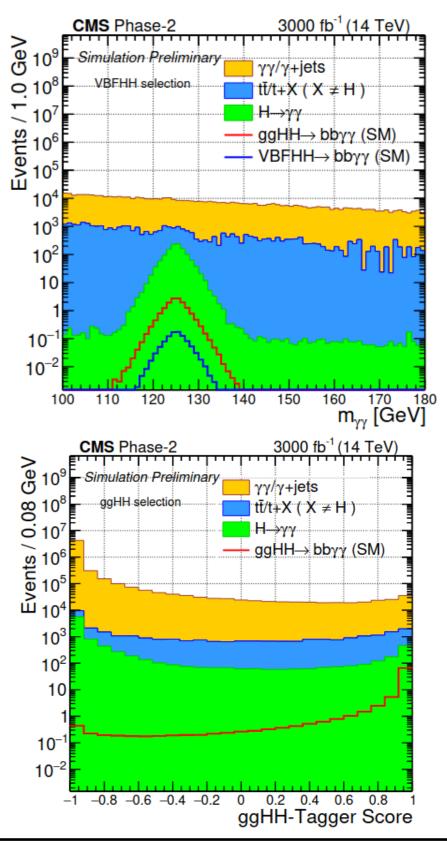
	ATLAS and CMS	300	00 fb⁻¹ (14 TeV)
b b γγ			HL-LHC prospects — ATLAS — CMS
bbττ			Combination Stat. uncertainty
bbbb			
bbVV(lvlv)	¥/////////////////////////////////////		//;
bbZZ(4I)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
combined	_		
	-2 0 2	4 6 8	10 12 14
			κ_{λ}

S.Donertas (Louvain)

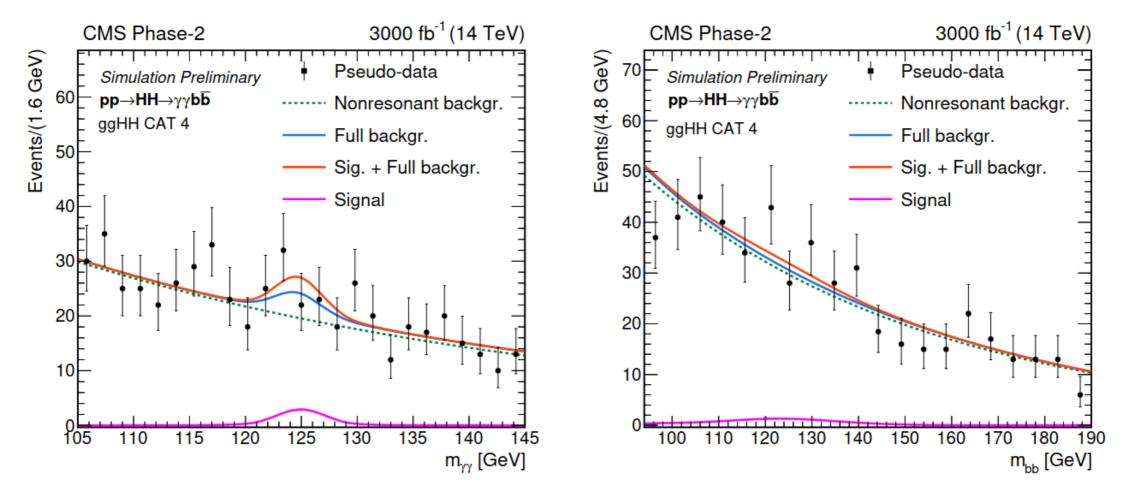


SNOWMASS '21 HH Updates

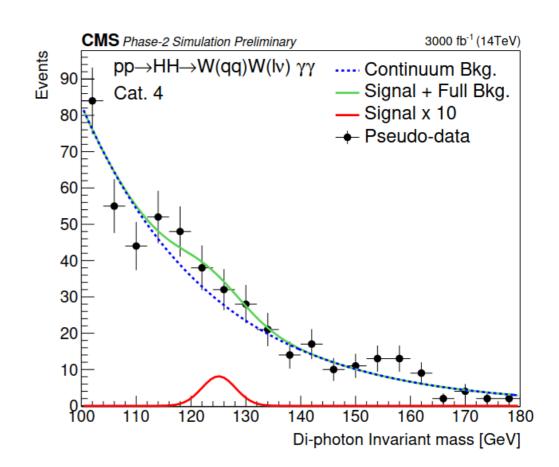
- Systematic uncertainties same as YR '18
- One decay mode redone
- Addition of two new decay modes
- Analysis strategy based on Run-2 Analysis of the respective channel
- New production mode explored: **ttHH**
- All non-resonant searches

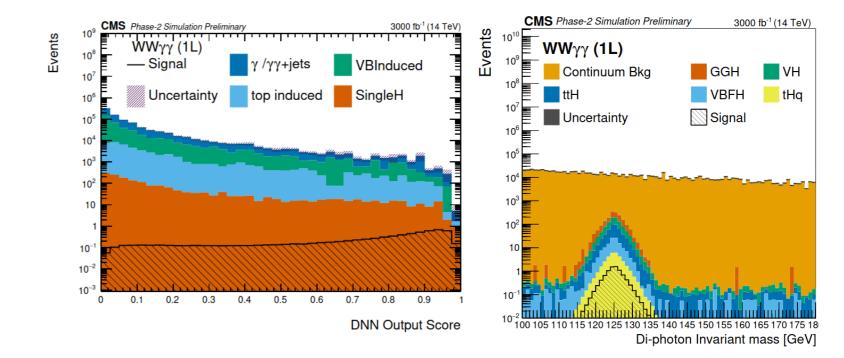


- The large BR (about 58%) for the decay H → bb combined with the rare (BR of about 0.2%) but distinguishable decay mode of H → γγ makes **bb**γγ highly sensitive for studying the HH production
- Redone for ggHH production mode, also added **VBFHH**
- Backgrounds of two types:
 - Resonant/Single Higgs Bkg
 - Non-Resonant/Continuum Bkg
- \bullet VBFHH selection characterized by the presence of two additional energetic jets at the high $|\eta|$ region
 - The events without the VBF jets form the ggHH-selection
- Categorization based on four-body mass + MVA score

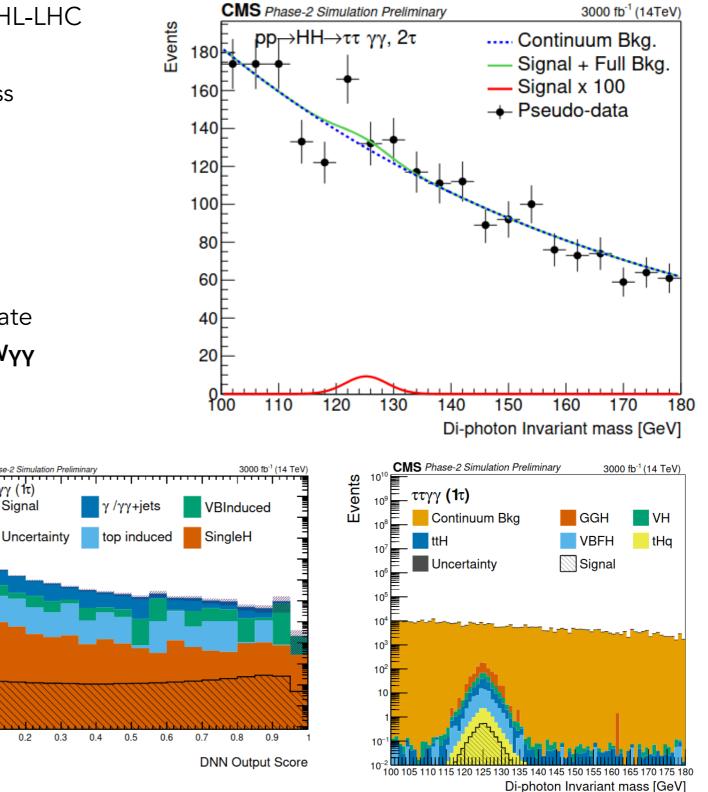

 $\widetilde{M}_X = m_{bb\gamma\gamma} - m_{bb} - m_{\gamma\gamma} + 250 \,\, \text{GeV}$

- MVA for signal vs bkg discrimination
 - BDT, ttH Killer
 - NN, ggHH and VBFHH tagger


- Compared to YR'18:
 - Improved ttH rejection (from 75% rejection to 85% (ggHH) and 90% (VBFHH))
 - Improved photon and b-jet identification (new MTD detector)
- Signal extraction with 2D fit in mbb and m $\gamma\gamma$



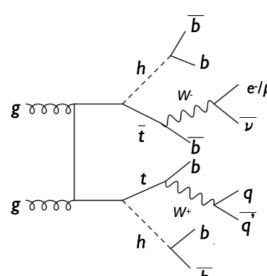
- The extracted significance for the inclusive HH signal is **2.16** σ including systematic uncertainties
 - YR '18 significance 1.8σ


- The first study providing significance numbers for HL-LHC in this channel
 - \bullet Benefiting from the distinguishable H $\rightarrow \gamma\gamma$ process
 - Out of three decay modes of W boson (WW→qqlv, WW→lvlv, WW→qqqqq,) two are studied
 - Fully-hadronic final state was dropped because of the lack of QCD bkg (the dominant bkg) modelling
- Considered only ggHH production mode
- Backgrounds of two types:
 - Resonant/Single Higgs Bkg
 - Non-Resonant/Continuum Bkg
- Categorization based on lepton number in the final state
 - number of τs kept at zero to stay exclusive w.r.t ττγγ
- Multi-class DNNs as the discriminator
- Signal extraction with 1D fit in $m\gamma\gamma$
- The extracted significance for the HH signal is 0.21σ including systematic uncertainties

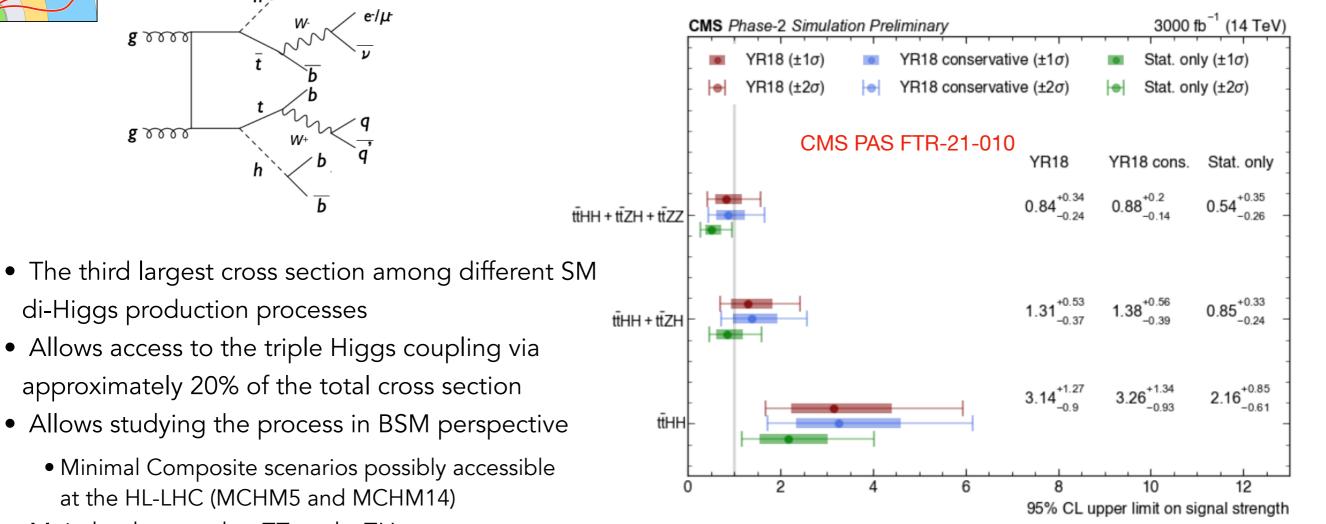
- The first study providing significance numbers for HL-LHC in this channel
 - \bullet Benefiting from the distinguishable H $\rightarrow \gamma\gamma$ process
 - \bullet Explored in two final states; 1 T and 2 T
- Considered only ggHH production mode
- Backgrounds of two types:
 - Resonant/Single Higgs Bkg
 - Non-Resonant/Continuum Bkg
- Categorization based on tau number in the final state
 number of e,µs kept at zero to stay exclusive w.r.t WWyy
- Multi-class DNNs as the discriminator
- Signal extraction with 1D fit in $m\gamma\gamma$
- The extracted significance for the HH signal is 0.08 or including systematic uncertainties
- Combined significance from the two channels is **0.22σ** including systematics

Events

10


10⁵

10⁴


10⁻¹

0.1

SNOWMASS '21 HH Updates: ttHH Production Mode

- Main backgrounds ttZZ and ttZH
 - Due to very similar kinematic characteristics of $Z \rightarrow bb$ and $H \rightarrow bb$ decays
- Deep neural network based discriminators used to separate signal from background
- Categorization based on b-jet multiplicity

Expected upper limit σ (ttHH) < 3.14 x SM Combined production : 0.84 X SM

	ΟP	aatoai		
 Measurement of Higgs self coupling in HL-LHC is very exciting! 	Channel	Signifi Stat. + syst.	Significance + syst. Stat.	
 Snowmass '21 improved YR '18 HL-LHC prospects by the addition of 	bbbb	0.95	1.	
 New decay channels 	bb au au	1.4	1.0	
 New production modes 	$bbWW(\ell \nu \ell \nu)$	0.56	0.5	
 New analysis/MVA techniques 	bb $\gamma\gamma$	<u>1.8</u>	.6 <i>σ</i> 1.	
 Preliminary combinations show a combined significance of 4.6 or 	$bbZZ(\ell\ell\ell\ell)$	0.37	0.3	

(ATLAS + CMS) • Very promising to reach the 5σ discovery at HL-LHC, so stay tuned!

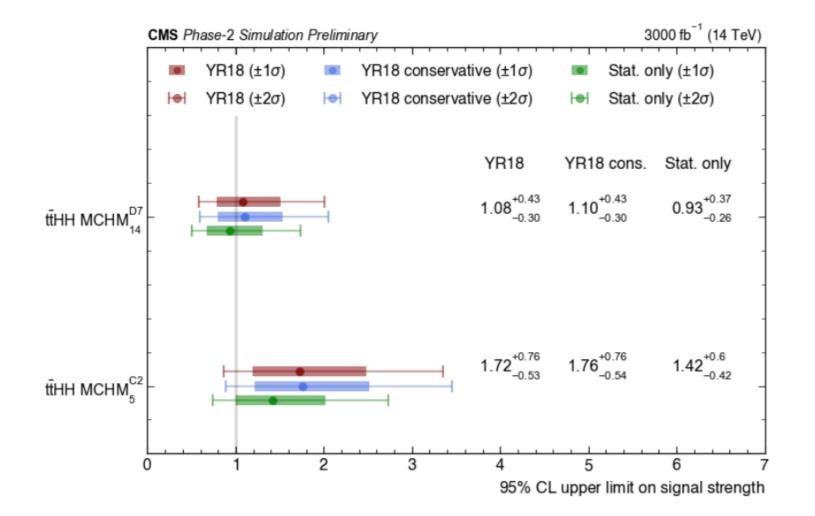
Updated!

bb au au	1.4	1.6
$\mathrm{bbWW}(\ell\nu\ell\nu)$	0.56	0.59
$bb\gamma\gamma$	<u>2.</u>]	-6 σ 1.8
$bbZZ(\ell\ell\ell\ell)$	0.37	0.37
$WW\gamma\gamma + \tau\tau\gamma\gamma$	0.22 σ	
Expected uppe	r limit alt	FUU) > 0 1/

Stat. only

1.2

Expected upper limit σ (ttHH) < 3.14 x SM



- Scenario 1: Run 2 systematic uncertainties (conservative scenario)
- Scenario 2: Based on estimates of ultimate performance for experimental uncertainties, a factor of 1/2 reduction for theoretical uncertainties

Source	Component	Run 2 uncertainty	Projection minimum uncertainty
Muon ID		1–2%	0.5%
Electron ID		1–2%	0.5%
Photon ID		0.5–2%	0.25–1%
Hadronic tau ID		6%	2.5%
Jet energy scale	Absolute	0.5%	0.1–0.2%
	Relative	0.1–3%	0.1–0.5%
	Pileup	0–2%	Same as Run 2
	Method and sample	0.5–5%	No limit
	Jet flavour	1.5%	0.75%
	Time stability	0.2%	No limit
Jet energy res.	-	Varies with $p_{\rm T}$ and η	Half of Run 2
MET scale		Varies with analysis selection	Half of Run 2
b-Tagging	b-/c-jets (syst.)	Varies with $p_{\rm T}$ and η	Same as Run 2
	light mis-tag (syst.)	Varies with $p_{\rm T}$ and η	Same as Run 2
	b-/c-jets (stat.)	Varies with $p_{\rm T}$ and η	No limit
	light mis-tag (stat.)	Varies with $p_{\rm T}$ and η	No limit
Integrated lumi.		2.5%	1%

