

CMS Experiment at the LHC, CERN

Data recorded: 2017-Oct-20 03:55:39.135168 GMT

Run / Event / LS: 305313 / 624767783 / 361

Search for HH→4b using boosted large-radius jets with the CMS detector

On behalf of the CMS collaboration

12th Higgs Hunting workshop

13th September 2022

Higgs self coupling

• Higgs trilinear self coupling is $\lambda_{HHH} = m_h^2/2v$ (v~246 GeV)

Higgs self coupling

- Higgs trilinear self coupling is $\lambda_{HHH} = m_h^2/2v$ (v~246 GeV)
- Important to study the trilinear coupling
 - probe the structure of the Higgs potential at large scales - metastability of the EW vacuum

Higgs self coupling

- Higgs trilinear self coupling is $\lambda_{HHH} = m_h^2/2v$ (v~246 GeV)
- Important to study the trilinear coupling
 - probe the structure of the Higgs potential at large scales - metastability of the EW vacuum
- Study HH production to measure λ_{HHH}
 - Two major production modes at LHC ggF and VBF

HH production modes -ggF

 Two main leading order ggF diagrams interfere destructively - 31.05 fb at 13 TeV at NNLO

HH production modes -ggF

- Two main leading order ggF diagrams interfere destructively - 31.05 fb at 13 TeV at NNLO
- Spectrum of m_{HH} is softer for large $|\kappa_{\lambda}|$ and harder for intermediate $|\kappa\lambda|$
 - boosted ggF signatures sensitive to intermediate $|\kappa_{\lambda}|$

HH production modes -VBF

VBF diagrams sensitive to C_V and C_{2V} - 1.73 fb at 13 TeV

HH production modes -VBF

- VBF diagrams sensitive to C_V and C_{2V} 1.73 fb at 13 TeV
- Smaller κ_{2V} leads to larger cross section, harder m_{HH} spectrum, and boosted VBF signatures

- HH→(bb)(bb) has the highest BR (33.9 %)
 - Large QCD background and poor decay channel resolution

- HH→(bb)(bb) has the highest BR (33.9 %)
 - Large QCD background and poor decay channel resolution
 - Considered inaccessible until a few years ago

- HH→(bb)(bb) has the highest BR (33.9 %)
 - Large QCD background and poor decay channel resolution
 - Considered inaccessible until a few years ago

How can we make HH → 4b more powerful?

• Explore the regime where both Higgs bosons are boosted $(p_T > 300 \text{ GeV})$

	bb	WW	ττ	ZZ	YY
bb	33.9%	HH branching ratios			
ww	24.9%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.07%	
γγ	0.26%	0.10%	0.03%	0.01%	

- HH→(bb)(bb) has the highest BR (33.9 %)
 - Large QCD background and poor decay channel resolution
 - Considered inaccessible until a few years ago

How can we make HH → 4b more powerful?

- Explore the regime where both Higgs bosons are boosted $(p_T > 300 \text{ GeV})$
 - The two b quark jets from the Higgs decay merge into one fat-jet

ſ		bb	WW	ττ	ZZ	ΥΥ
ı	bb	33.9%	HH branching ratios			
	ww	24.9%	4.6%			
	ττ	7.3%	2.7%	0.39%		
	ZZ	3.1%	1.1%	0.33%	0.07%	
	γγ	0.26%	0.10%	0.03%	0.01%	

- HH→(bb)(bb) has the highest BR (33.9 %)
 - Large QCD background and poor decay channel resolution
 - Considered inaccessible until a few years ago

How can we make HH → 4b more powerful?

- Explore the regime where both Higgs bosons are boosted $(p_{\tau} > 300 \text{ GeV})$
 - The two b quark jets from the Higgs decay merge into one fat-jet
- Exploit fat-jet sub-structures for better S/B
 - Use machine learning techniques to identify b quarks inside fat jets

Г		bb	WW	ττ	ZZ	YY
	bb	33.9%	HH branching ratios			
	ww	24.9%	4.6%			
	ττ	7.3%	2.7%	0.39%		
	ZZ	3.1%	1.1%	0.33%	0.07%	
	YY	0.26%	0.10%	0.03%	0.01%	

Boosted H→(bb) jet identification

ParticleNet Jet Tagger

Graph Neural Network (GNN) based classifier for large radius jets (Phys. Rev. D 101, 056019)

 low-level jet information (PF candidates, secondary vertices from b-quark decays etc.) as inputs

Boosted H→(bb) jet identification

ParticleNet Jet Tagger

Graph Neural Network (GNN) based classifier for large radius jets (Phys. Rev. D 101, 056019)

- low-level jet information (PF candidates, secondary vertices from b-quark decays etc.) as inputs
- output scores: X→bb, X→cc, X→light quarks,
 QCD

Boosted H→(bb) jet identification

ParticleNet Jet Tagger

Graph Neural Network (GNN) based classifier for large radius jets (Phys. Rev. D 101, 056019)

- low-level jet information (PF candidates, secondary vertices from b-quark decays etc.) as inputs
- output scores: X→bb, X→cc, X→light quarks,
 QCD
 - For our purposes, discriminate X→bb vs QCD jets:

$$T_{Xbb} = \frac{P_{Xbb}}{P_{Xbb} + P_{QCD}}$$

Boosted HH → 4b search from CMS

- Identify two high p_⊤ Higgs candidate large radius jets using
 - Particle Net T_{xbb} score
 - Jet mass (m_i)

- Identify two high p_⊤ Higgs candidate large radius jets using
 - Particle Net T_{xbb} score
 - Jet mass (m_i)
- Based on additional kinematic features, separate into ggF or VBF category

- Identify two high p_T Higgs candidate large radius jets using
 - Particle Net T_{xbb} score
 - Jet mass (m_i)
- Based on additional kinematic features, separate into ggF or VBF category
- Use signal depleted control regions to perform data-driven estimates of backgrounds
 - o QCD
 - Top

- Identify two high p_⊤ Higgs candidate large radius jets using
 - Particle Net T_{xbb} score
 - Jet mass (m_i)
- Based on additional kinematic features, separate into ggF or VBF category
- Use signal depleted control regions to perform data-driven estimates of backgrounds
 - QCD
 - Top
- Perform final signal extraction fit to m_{HH} or Jet m_i

 Boosted Decision Tree (BDT) to discriminate HH signal events from QCD and top

- Boosted Decision Tree (BDT) to discriminate HH signal events from QCD and top
- Three event categories optimized based on BDT score and Jet 2 T_{xbb} score

- Boosted Decision Tree (BDT) to discriminate HH signal events from QCD and top
- Three event categories optimized based on BDT score and Jet 2 T_{xbb} score
- Observable for HH signal extraction : Jet 2
 Mass

- Boosted Decision Tree (BDT) to discriminate HH signal events from QCD and top
- Three event categories optimized based on BDT score and Jet 2 T_{xbb} score
- Observable for HH signal extraction : Jet 2
 Mass
- Background estimation
 - Top: data driven correction factors applied to simulation

- Boosted Decision Tree (BDT) to discriminate HH signal events from QCD and top
- Three event categories optimized based on BDT score and Jet 2 T_{xbb} score
- Observable for HH signal extraction : Jet 2
 Mass
- Background estimation
 - Top: data driven correction factors applied to simulation
 - QCD: parametric fit to data in control region

- Boosted Decision Tree (BDT) to discriminate
 HH signal events from QCD and top
- Three event categories optimized based on BDT score and Jet 2 T_{xbb} score
- Observable for HH signal extraction : Jet 2
 Mass
- Background estimation
 - Top : data driven correction factors applied to simulation
 - QCD: parametric fit to data in control region
 - Signal region QCD shape= QCD fail shape ⊗TF (j₂ Mass)

- Three exclusive signal regions based on both jets satisfying:
 - High Purity (HP): $T_{Xbb} > 0.98$
 - **Medium Purity (MP):** $0.94 < T_{Xbb} < 0.98$
 - \sim Low Purity (LP): 0.90 < T_{Xbb} < 0.94

- Three exclusive signal regions based on both jets satisfying:
 - \circ High Purity (HP): $T_{Xbb} > 0.98$
 - **Medium Purity (MP):** $0.94 < T_{Xbb} < 0.98$
 - Low Purity (LP): $0.90 < T_{Xbb} < 0.94$
- Background estimation
 - Top: estimated from simulation with data driven correction factors

- Three exclusive signal regions based on both jets satisfying:
 - High Purity (HP): $T_{Xhh} > 0.98$
 - **Medium Purity (MP):** $0.94 < T_{Xbb} < 0.98$
 - Low Purity (LP): $0.90 < T_{Xbb} < 0.94$
- Background estimation
 - Top: estimated from simulation with data driven correction factors
 - QCD ABCD method

- Three exclusive signal regions based on both jets satisfying:
 - High Purity (HP): $T_{Xhh} > 0.98$
 - **Medium Purity (MP):** $0.94 < T_{Xbb} < 0.98$
 - Low Purity (LP): $0.90 < T_{Xbb} < 0.94$
- Background estimation
 - Top: estimated from simulation with data driven correction factors
 - QCD ABCD method
- Perform final fit to m_{HH} in different WP regions

QCD Control Region

Low T_{xbb}

125 GeV

 $TF = N_{B}/N_{A}$ $N_{D} = TF * N_{c}$

Search Region

High T_{Xbb}

Results

Results

Results

Uncertainty source	$\Delta \mu$	
Statistical	+2.55	-2.30
Signal extraction	+2.32	-2.06
QCD multijet modeling	+1.12	-1.01
$t\bar{t}$ modeling	+0.28	-0.19
Systematic	+2.09	-0.89
Simulated sample size	+0.55	-0.55
T_{Xbb} selection	+0.72	-0.32
Jet energy and mass scale and resolution	+0.54	-0.39
Trigger selection	+0.26	-0.03
Luminosity measurement	+0.13	-0.04
Pileup modeling	+0.05	-0.06
Other experimental uncertainties	+0.05	-0.03
Theoretical	+0.63	-0.63
Total	+3.30	-2.47

ggF + VBF boosted HH→4b combination

• Upper limit on σ_{HH} : 9.9 (5.1) X SM Obs(Exp) (~1.4 σ excess over SM)

ggF + VBF boosted HH→4b combination

• Upper limit on σ_{HH} : 9.9 (5.1) X SM Obs(Exp) (~1.4 σ excess over SM)

ggF category dominates the upper limit on HH cross section.

ggF + VBF boosted HH→4b combination

- Upper limit on σ_{HH} : 9.9 (5.1) X SM Obs(Exp) (~1.4 σ excess over SM)
- ggF category dominates the upper limit on HH cross section
- VBF category sensitive to BSM values of κ_{2V}
 - \sim κ_{2V} =0 excluded at 6.3 σ for the first time when other couplings at SM values

13th September 2022 Higgs Hunting, Irene Dutta

2D likelihood scans

 κ_{2V} =0 excluded at >3 σ for the first time for any value of κ_{λ}

Signal strength results in context

Best sensitivity to SM ggF HH production and BSM VBF HH production compared to other CMS analyses

Future of HH

 HL-LHC Projected combined ATLAS +CMS ~ 4σ Exp. (<u>CERN-LPCC-2018-04</u>)

Future of HH

- HL-LHC Projected combined ATLAS +CMS ~ 4σ Exp. (CERN-LPCC-2018-04)
 - Only using the 2016/2017 analyses and does NOT include boosted analyses
 - Potential of 5σ → new boosted analysis methods/ constraining systematics

Future of HH

- HL-LHC Projected combined ATLAS +CMS ~ 4σ Exp. (CERN-LPCC-2018-04)
 - Only using the 2016/2017 analyses and does NOT include boosted analyses
 - Potential of 5σ → new boosted analysis methods/ constraining systematics

More boosted searches targeting bbVV etc. are underway .. stay tuned!

Thank you! Questions?

Backup

QCD background estimation in ggF category

- Fail region j₂ mass shape of QCD = Data (non-QCD backgrounds)
- QCD distribution in the signal regions = QCD fail shape ⊗TF (j₂ Mass)
- The order of the transfer factor for each category is determined by performing a F-test and goodness-of-fit (GOF) test
 - measured to be polynomial of degree (0,0,0) for BDT Bin 1, Bin 2 and Bin 3 respectively

Corrections to top background in ggF category

Mis-modeling of the T_{xbb} distribution

- Corrected in a semi-leptonic tt Control Region with one electron/muon and one fat-jet with p_⊤ > 300 GeV
- Derive correction factors as data to simulation ratios in different jet T_{xhb} bins.

Mis-modeling of the recoil of the tt system

- Corrected in a hadronic tt Control Region with two top-like fat-jets with p_T > 450 GeV and each fat-jet containing a sub-jet that is b-tagged
- Obtain correction factors with linear fits to data to simulation ratios in bins of $p_{\tau}^{\ jj}$

Jet 2 mass distribution in a hadronic tt Control Region post all corrections to the top background

VBF analysis

- Leading fat-jet jet p_T > 500 GeV; sub-leading fat-jet jet p_T > 400 GeV
 - $\circ \Delta \phi_{i1i2} > 2.6, \Delta \eta_{i1i2} > 2.0$
 - Jet 1 $m_{\text{req}} \in [110, 150]$ GeV and Jet 2 $m_{\text{req}} \in [100, 145]$ GeV
- Two small radius VBF jets
 - \circ M_{ii} > 500 GeV, $\Delta \eta_{ii}$ > 4
- Three exclusive regions based on WPs:
 - \circ High Purity (HP): Both Higgs candidate jets pass tight WP ($T_{Xbb} > 0.98$)
 - \circ Medium Purity (MP): Both pass medium WP, but not tight WP (0.94 < T_{Xbb} < 0.98)
 - \circ Low Purity (LP): Both pass loose WP, but not medium WP (0.90 < T_{xbb} < 0.94)

VBF analysis

- ABCD method for QCD bkg estimation
 - Region D search region
 - Define region C enriched in QCD multijet events with both fat jets having 0.1 < T_{xbb} < 0.9.
 - \circ Define control region A and B with same $T_{\rm Xbb}$ selections as region C and D respectively, but in the **subleading jet** mass sidebands
 - \circ Define TF = N_B/N_A
 - A separate TF is derived for each m_{HH} bin, in each search category (HP, MP and LP), and for each year.
 - \circ The QCD background in the search region D: $N_D = TF * N_c$
- Just like ggF category, estimate Top background from simulation with data driven corrections
- Perform final fit to m_{HH} in different bins of T_{Xbb} score

T_{xbb} shape correction in HH signal

- T_{Xbb} gives us a boost in sensitivity, so it's important to ensure good Data/MC agreement in its shape for the signal jets
- Corrected using fat proxy jets originating from g→bb (benefits from the large statistics of QCD events)
- Each of the two sub-jets has at least one matched secondary vertex (SV)
 - Fit variable: log(M_{SV}), for SV with max d_{xy} (track impact parameter)
 - "b" template tends to peak at the B meson mass at ~ 5 GeV
 - o "c" template peaks at the D meson mass at ~ 2 GeV
- Derive data to simulation ratios as correction factors in 2D grid of (p_T, Jet T_{xbb})

Pulls and impacts

Dominant uncertainties

- shape uncertainty on the QCD multi-jet background.
- Jet energy scale, mass scale, and resolution uncertainties.
- T_{Xbb} shape
- Theory uncertainties for the gluon fusion HH signal modelling

