

The invisible Higgs: newest results of CMS

<u>Olivier Davignon</u> (LLR - CNRS-IN2P3 & École Polytechnique) for the CMS Collaboration

Higgs Hunting September 13th, 2022

Introduction

- H(125) to invisible decays very small in the SM $\mathcal{B}(H \rightarrow ZZ^* \rightarrow 4\nu) \sim 0.1\%$
- Direct searches + indirect constraints: most recent result from CMS has a best fit 𝔅(H→inv.) ~ 7% ± 5% (compatible with 0)
- Several models predict an enhancement in invisible decays, e.g. if Higgs serving as / contributing to a SM ↔ DM connection
 - H(125) could decay to a pair of fermion/scalar/vector
 DM particles
 - There could be a Dark Higgs sector with mixing to the SM Higgs sector

● H→invisible searches at the LHC

- Complementary to direct DM searches
- Observable production would be a very exciting sign of New Physics
- Direct searches using MET+X signatures and their combination: subject of this talk

Olivier Davignon

2

The Higgs to invisible searches in CMS

Final state	Reference	Lumi		
MonoJet	EXO-20-004	140 fb-1		
MonoV	JHEP 11 (2021) 153			
(Z→ℓℓ)H	EXO-19-003 Eur. Phys. J. C 81, 1 (2021) pp.13	140 fb ⁻¹		
VBF	HIG-20-003 Phys. Rev. D 105 (2022) 092007	140 fb ⁻¹		
ttH semi leptonic	SUS-19-009 JHEP 05 (2020) 032	138 fb-1		
ttH fully leptonic	SUS-19-011 Eur. Phys. J. C 81 (2021) 3	138 fb-1		
ttH hadronic	New			
VH hadronic resolved	HIG-21-007	138 fD-1		
Combination of all channels		Up to 140 fb ⁻¹ @ 13 TeV Up to 24.6 fb ⁻¹ @ 7&8 TeV		

Background estimation

$Z \rightarrow \nu \nu + jets \rightarrow irreducible background$

- Estimated along with VV and smaller bkgs using:
 - **Double-lepton control regions**, where the leptons are turned into sources of missing momentum
 - *Single-photon control region,* where the photon is turned into a source of missing momentum

+ transfer factors used in simultaneous fit with the signal region

$W \rightarrow \ell \nu + jets \rightarrow "lost lepton" background$

- Estimated along with leptonic top and smaller bkgs using:
 - *Single-lepton control regions,* where the lepton is turned into a source of missing momentum
 - + transfer factors used in simultaneous fit with the signal region

Olivier Davignon

 Z^0

mis-identified,

etc.

W±

 $\$

mis-reconstructed,

q

V

g **QCD multijet** → reducible background

- Can be due to mismeasurements of jets energies, detector noise, etc. Reduced through dedicated selections & estimated using:
 - **QCD** control regions, and transfer factors

 $\overline{\mathsf{q}}$

 \overline{q}

q

$\int_{a}^{b} \langle MonoJet \& MonoV search (1/2) \rangle$

Experimental signature & selections

- Trigger on p_T^{miss} and H_T^{miss}
- High- p_T & central jet $|\eta| < 2.4$:
 - $\circ \quad MonoV: AK8 \ p_T > 250 \ GeV$
 - $\circ \quad MonoJet: AK4 \ p_T > 100 \ GeV$
- $p_T^{miss} > 250 \text{ GeV}$
- Suppress QCD multijet background through $\Delta \phi(\vec{p}_{T}^{\text{miss}}, \vec{p}_{T}^{j}) > 0.5 \text{ cut}$
- Veto on leptons, photons, b-jets

Jet tagging

8 00000

8

- Events with an AK8 jet with $p_T > 250$ GeV that pass certain DeepAK8 score and m_{SD} cuts are assigned to one of the two MonoV categories (low or high purity)
- Events without such jet are assigned to MonoJet

Background estimation

- Simultaneous fit to SR, ee, $\mu\mu$, e, μ and γ control regions to extract $Z \rightarrow vv+jets$ and $W \rightarrow \ell v+jets$ backgrounds
- QCD estimated in a dedicated CR where the $\Delta \phi(\vec{p}_{T}^{miss}, \vec{p}_{T}^{j})$ cut is inverted

< x MonoJet & MonoV search (2/2) EXO-20-004 JHEP 11 (2021) 153g 8 00000 h 8 0000

Analysis	95% C.L. upper limit on ℬ(H→inv.) observed (expected)
MonoJet	60% (36%)
MonoV	37% (31%)
Combination	<mark>28% (25%)</mark>

Olivier Davignon

W, Z

W*. Z*

VBF H- \rightarrow invisible (1/4)HIG-20-003 Phys. Rev. D 105 (2022) 092007

Triggers, categories & selections

2 event categories

- "MTR": based on standard p_T^{miss} and H_T^{miss} trigger, $p_T^{miss} > 250$ GeV cut offline
- "VTR": based on VBF 2-jet + MET trigger, p_T^{miss} > 160 GeV and tighter cuts on jets
 - Improvement of sensitivity ~ 8%

Selections

- Based on two forward / high p_T jets, close in $\Delta \phi(jj)$, high p_T^{miss} , jets and p_T^{miss} well separated in $\Delta \phi$
 - \rightarrow fight against the main backgrounds from V+jets (in particular VBF/EWK) and QCD

Olivier Davignon

• Mjj used as the fit variable

VBF H— \rightarrow invisible (2/4)HIG-20-003 Phys. Rev. D 105 (2022) 092007

Instrumental backgrounds

Analysis affected by many instrumental backgrounds - mostly endcaps and forward calorimeters

HF subdetector noise $(p_T^{miss} aligned with jets)$

- Suppressed using jet shape cuts
- Mjj shape of HF noise evaluated using dedicated control region with HF jet shape cuts inverted → closure test

QCD multijet (p_T^{miss} not aligned with jets)

• Estimated using 2 dedicated control regions with $\min \Delta \phi$ (jet, p_T^{miss}) cut inverted; a fit is performed to the $\min \Delta \phi$ distribution in order to extract the predicted yield in the SR (which is at high $\min \Delta \phi$)

Olivier Davignon

\rightarrow Tremendous effort to suppress and estimate backgrounds coming from such effects

VBF H \rightarrow invisible (3/4)HIG-20-003 Phys. Rev. D 105 (2022) 092007

V+jets backgrounds

- Simultaneous fit to SR, ee, $\mu\mu$, e, μ and γ control regions to extract signal and $Z \rightarrow \nu\nu$ +jets and $W \rightarrow \ell\nu$ +jets backgrounds simultaneously
- Total of 18 such CRs for '17 & '18
- Transfer factors to predict W and Z backgrounds in the SR from the CR

• Use W/Z and Z/ γ ratios (separate

for strong and ewk productions) to

optimally use the information from

Olivier Davignon

CMS

the CRs

VBF H- \rightarrow invisible (4/4)HIG-20-003 Phys. Rev. D 105 (2022) 092007

Combined with previous analyses from 2012 (8 TeV) and from 2015-2016

Analysis	95% C.L. upper limit on ℬ(H→inv.) observed (expected)
VBF	<mark>18% (10%)</mark>

<*ttH(hadronic)+VH(resolved)

HIG-21-007

Selections & categories

Selections are targeting >=2 jets final states, where the jets are rather central $|\eta| < 2.4$

- Cuts are mainly aimed at improving signal purity: $p_{T}{}^{\text{miss}}$, $H_{T}{}^{\text{miss}}$ and jet p_{T}
- Cuts ensuring event quality on $p_T^{miss}/H_T^{miss} < 1.2, \min \Delta \phi$ (jet, p_T^{miss}) > 0.5, $\tilde{\omega}_{min}$ > 0.3

Categories

8 2000000

8 2000000

- Count the number of jets and b-jets
- Use of DeepAK8 taggers to tag top's and W's in boosted ttH decays: "**ttH Boosted**" categories
- Also target resolved ttH decays with high jet multiplicity: "**ttH Resolved**" categories
- 2 well resolved jets (+0/1/2 b-jets) with mjj compatible with m_W or m_Z make up the "**VH resolved**" categories

QCD estimation

Relies on dedicated CR with min $\Delta \phi$ (jet, p_T^{miss}) and $\tilde{\omega}_{min}$ cuts inverted \rightarrow used to normalize MC in SR using transfer factors

Category	Subcategory	n _i	$n_{\rm b}$	$n_{\rm t}$	$n_{\rm V}$	$p_{\mathrm{T,j_2}}$ (GeV)	Other
	2Boosted1b	≥ 5	1		2	<u>, -</u>	
ttH Boosted	2Boosted2b	≥ 5	≥ 2		2		
	1t1b	≥ 5	1	1	0	> 80	
	1t2b	≥ 5	≥ 2	1	0	≥ 00	-
	1W1b	≥ 5	1	0	1		
	1W2b	≥ 5	≥ 2	0	1		
	5j1b	5	1	0	0		$\Delta \phi(b_1, p_{\mathrm{T}}^{\mathrm{miss}}) > 1.0$
ttH Resolved	6j1b	≥ 6	1	0	0	≥ 80	$\& \Delta \phi(j_1, p_{\underline{T}}^{\vec{\mathrm{miss}}}) > \pi /$
	5j2b	5	≥ 2	0	0	_	$\Delta \phi(b_1, p_{\mathrm{T}}^{\mathrm{miss}}) > 1.0$
	6j2b	≥ 6	≥ 2	0	0		& $\Delta \phi(b_2, p_{\mathrm{T}}^{\mathrm{miss}}) > \pi/$
VH	2j0b	2	0	0	0		
	2j1b	2	1	0	0	≥ 30	$m_{\mathrm{jj}} \in [65, 120) \mathrm{GeV}$
	2j2b	2	2	0	0		"

Ewk background estimation

Olivier Davignon

 Use dedicated ee, μμ, e, μ and γ (VHonly) control regions simultaneously in the fit with the SR

$\int_{q}^{s} \underbrace{t}_{x} ttH + VH: control regions (1/2) \int_{q}^{q} \underbrace{t}_{x} \underbrace{t}_{x} \underbrace{t}_{y} \underbrace{t$

- p_T^{miss} used as discriminant variable
 - fine binning when allowed by statistics

ttH

VH resolved

In ttH, for statistical reasons:

- Di-lepton CRs shared across categories
- Boosted ttH: $\ell \ell = ee + \mu \mu CR$

Photon CR only used in VH

8 2000000 W, Z < ttH+VH: control regions (2/2)8 200000 HIG-21-007 **NEW!**

16

VH resolved

VH-targeted categories -- e+jets

2j

Total bkg. (s+b fit) uncertai

Multiboso

Drel-Yan

138 fb⁻¹ (13 TeV

Data

Total bkg. (s+b fit)

ttH+VH: signal regions HIG-21-007 NEW!

CMS Preliminar

10

10⁵

- iets

Multibosor

QCD multije

tτΧ

138 fb⁻¹ (13 TeV)

Total bkg. (s+b fit)

Data

2b

VH resolved

VH-targeted categories -- SR

2j

Total bkg, (s+b fit) uncertain

– VH

Total bkg. (CR—only fit)

Dominant backgrounds

- ttH: ttbar
- VH: $Z \rightarrow \nu \nu + jets$

QCD is a small background after selection cuts

Good data/MC agreement post-fit, no significant excess

Olivier Davignon

8 2000000

8 200000

Analysis	95% C.L. upper limit on ℬ(H→inv.) observed (expected)	
ttH hadronic	51% (53%)	
VH resolved	68% (53%)	
Combination	<mark>47% (40%)</mark>	

ttH hadronic and VH resolved yielding similar performance in terms of $H \rightarrow$ invisible exclusion limits

H→invisible combination

NEW! HIG-21-007

Analysis Tag	Production Mode	Integr	ated Lu	minosity (fb $^{-1}$)
		7 TeV	8 TeV	13 TeV (Run 2)
VBF-tagged [20]	VBF	-	19.2	140
	Z(ll)H	4.9	19.7	140
VH-tagged [24][22]	Z(bb)H	-	18.9	138
	V(jj)H	-	19.7	140
ttH-tagged [68, 69]	ttH (had)		-	138
	ttH (lep)	-		138
ggH-tagged [24]	MonoJet	-	19.7	140

Combination of all channels presented today

+ tt(leptonic)H→ invisible re-interpretation from SUS-19-009 and SUS-19-011

+ $(Z \rightarrow \ell \ell)$ H \rightarrow invisible from EXO-19-003

Overlap between analyses

Canceled/made negligible through specific cuts, e.g.:

- Overlap with VBF: in other analyses, veto events with 2 jets with $p_T > 80$, 40 GeV, in opposite hemispheres, with $m_{jj} > 200$ GeV
- Overlap with MonoJet/MonoV: in VH resolved analysis, remove events that have 65 < m_{ij} < 120 GeV

Treatment of systematics

- Theo. signal systematics \rightarrow correlated
- Theo. background systematics → uncorrelated (≠ phase space)

- Luminosity \rightarrow correlated
- Trigger \rightarrow correlated if same paths / datasets
- Lepton efficiencies \rightarrow correlated if identical
- JES & JER \rightarrow correlated between VBF/MonoJet/MonoV
- Everything else → uncorrelated

H-invisible combination: results (1/2)

Channels grouped by production mode

- Measurement dominated by VBF
- Other channels improve VBFstandalone by about 20%

Analysis	95% C.L. upper limit observed (expected)
Combination	𝔅 (H→inv.) < 15% (8%)

Strongest expected exclusion limit to date from direct searches

H \rightarrow invisible combination: results (2/2)

NEW! HIG-21-007

Observed limit on $\mathcal{B}(H \rightarrow inv.)$ also set as a function of the k_V and k_F coupling modifiers

- Best fit / contours from CMS Higgs10 paper [Nature 607 (2022) 60]
- In the 95% C.L. ellipse, observed limit on $\mathcal{B}(H\rightarrow inv.)$ ranges between 14 and 17%

4.9 fb⁻¹ (7 TeV), 19.7 fb⁻¹ (8 TeV), 140 fb⁻¹ (13 TeV) 0.3 ^wo/(0.25 1.3 ч **CMS** Preliminary 1.2 CMS best fit 68% C.L. BR(H 0.2 1.1 95% C.L. SM production 0.15 등 upper limit 0.9 0.1 C.L 0.05 % 0.8 1.3 1.2 1.1 ĸν

Result also interpreted in the context of Higgs portal models (i.e. where there is a substantial coupling of DM to the Higgs), **setting 90% C.L. limits on the DM-nucleon cross section for:**

- Fermion / scalar DM
- Vector DM using the "historical" EFT
- Vector DM using new EFT approach: UV-complete model at dark Higgs masses of $m_2 = 1,10,100$ GeV, mixing angle $\theta = 0.2$ [LHEP 2022 (2022) 270]

Result competitive/complementary with direct DM detection

 $\approx 10 \text{ GeV}$ for fermion DM

 \lesssim 6 GeV for scalar DM

 $\approx 20~GeV$ for vector DM in the most favorable case shown here (with $m_2{=}100~GeV)$

Summary

• Two new results presented today

- Analysis of ttH + VH resolved hadronic modes $\rightarrow B(H\rightarrow inv.) < 47\%$ (exp. 40%) @ 95% C.L.
- Combination of all CMS H \rightarrow invisible searches $\rightarrow \mathcal{B}(H\rightarrow inv.) < 15\%$ (exp. 8%) @ 95% C.L.

22

- \rightarrow Improvement of ~ 20% relative on top of standalone VBF result
- Small < 2σ excess in both ATLAS* and CMS H \rightarrow invisible results \rightarrow To be followed up with more data *From ATLAS Higgs1

- Limits also set in the context of Higgs-portal models of dark matter interactions
 Complementary to direct searches for low masses
- **Run-3 has just started:** LHC will provide more data and we can expect more improvements in data collection and analysis techniques from experiments

BACKUP

$(Z \rightarrow \ell \ell)H \rightarrow invisible$

EXO-19-003 Eur. Phys. J. C 81, 1 (2021) pp.13

Experimental signature & selections

- Single/double electron and muon triggers
- Two same flavour opposite sign leptons, with $|m_{\ell\ell}-m_Z| < 15 \text{ GeV}, p_{T,\ell\ell} > 60 \text{ GeV}$
- b-jet, tau, > 1 jet, additional leptons vetoes
- Additional (mostly angular) selections to reject DY, WZ and top backgrounds

Background estimation

- 3ℓ control region: estimation of the WZ→ℓ'vℓℓ background
- 4ℓ control region: estimation of the ZZ→ℓ'ℓ'ℓℓ background
- $e\mu$ control region: estimation of the non-resonant background WW $\rightarrow \ell \nu \ell \nu$, fully leptonic tt, etc.
- Low p_T^{miss} control region: estimation of the DY background

Final state	95% upper limit on 𝔅(H→inv.) observed (expected)
(Z→ℓℓ)H	<mark>29% (25%)</mark>

