Searches for lepton-flavour-violating decays of the Higgs boson into $\mathrm{e}-\tau$ and $\mu-\tau$ in ATLAS

Antonio De Maria
on the behalf of the ATLAS collaboration
Higgs Hunting 2022

LFV $H \rightarrow I \tau$ decay search in ATLAS

- Analysis searching for two independent signals, $H \rightarrow e \tau$ and $H \rightarrow \mu \tau$, considering both hadronic and leptonic τ decays
- Full leptonic final state (leplep), $e \tau_{\mu}$ and $\mu \tau_{e}$, considering two different estimation methods for major backgrounds:
- MC-template method: backgrounds estimated using Monte Carlo (MC) templates + normalisation through Control Regions (CRs)

Symmetry method: backgrounds estimated via data-driven symmetry method

- One lepton and one hadronically decaying τ final state (lephad), $e \tau_{\text {had }}$ and $\mu \tau_{\text {had }}$, considering only MC-template method
- First time these results are shown in a conference

$e \tau_{\text {had }}$ and $\mu \tau_{\text {had }}$ search

Event selection and categorisation

associated production with a gauge boson (VH)

- Cut-based signal region categorisation, VBF/non-VBF, to enhance contribution from main Higgs boson production modes
- MVA analysis in each signal region to enhance sensitivity

Background estimation for MC-Template method in leplep final state

$$
\text { Non-VBF, } Z \rightarrow \tau \tau \text { CR }
$$

- $Z \rightarrow \tau \tau$ and $T o p(t \bar{t}+$ single-top $)$ contribution estimated through templates + normalisation through 1-bin CRs separately for $V B F$ and non-VBF categories
- Top CR: require at least 1 b -jet
- $Z \rightarrow \tau \tau$ CR: require lead lepton $\mathrm{p}_{T}<45 \mathrm{GeV}$
- $Z \rightarrow \mu \mu$ background estimated with templates + prefit normalisation and related uncertainty from dedicated CR
- Other minor backgrounds estimated from MC
- Misidentified background (Fake) estimated via $A B C D$ method using lepton charge and isolation

VBF, SR

- Based on the assumption that SM processes are symmetric with respect to $\mathrm{e} \leftrightarrow \mu$ exchange
- LFV H decays break this symmetry if $\mathcal{B r}(H \rightarrow \mu \tau)$ different from $\operatorname{Br}(H \rightarrow e \tau)$
- Use data from one channel to make background prediction for the other channel, after correcting for biases due to experimental effects
- Fakes estimated through FakeFactor (FF) based on lepton identification
- Method sensitive to Br differences between two LFV signals; if one $\mathcal{B r}$ assumed to be 0 , then analysis measures absolute $\mathcal{B r}$ value

Non-VBF, SR

Background estimation for MC-Template method in lephad final state

Non-VBF, SR

- $Z \rightarrow \tau \tau$ contribution estimated with templates + independent Norm Factors (NFs) for VBF and non-VBF categories
- Top contribution estimated through templates and normalisation through shared NFs with leplep in MC-Template fit, or fixed to MC
- $Z \rightarrow \mu \mu$ background estimated with templates + prefit normalisation and related uncertainty from dedicated CR
- Other minor backgrounds estimated from MC
- Fake estimated through FF method based on hadronic τ identification

VBF, SR

MVA analysis strategy

- Different strategies developed for the different final states/methods
- Symmetry method: Neural Networks (NNs) trained separately for VBF and non-VBF categories, but summing over $e \tau_{\mu}$ and $\mu \tau_{e}$ final states
- for non-VBF category: one NN with 3 nodes \rightarrow signal node used for fit
- for VBF category: three NNs combined linearly (Signal Vs Z/H $\rightarrow \tau \tau+\mathrm{MC}$ fakes, Signal Vs Top + Diboson $+\mathrm{H} \rightarrow W W$, Signal Vs Fake)

- Negative signal for $e \tau_{\mu}$ for Symmetry method expected due to anticorrelation of $\mathcal{B r}(H \rightarrow \mu \tau)$ and $\mathcal{B r}(H \rightarrow e \tau) \quad$ A. De Maria

MVA analysis strategy

- Different strategies developed for the different final states/methods
- MC-template leplep: Boosted Decision Trees (BDTs) trained separately for VBF and non-VBF categories, but summing over $e \tau_{\mu}$ and $\mu \tau_{e}$ final states
- 3 BDTs combined linearly (Signal Vs Z/H $\rightarrow \tau \tau+\mathrm{Z} \rightarrow I I$, Signal Vs Top + Diboson $+\mathrm{H} \rightarrow W W$, Signal Vs Fake)

MVA analysis strategy

- Different strategies developed for the different final states/methods
- MC-template lephad: BDTs trained separately for VBF, non-VBF categories and for $e \tau_{\text {had }}, \mu \tau_{\text {had }}$ final states
- non-VBF $e \tau_{\text {had }}$: 3 BDTs combined linearly (Signal Vs $Z \rightarrow \tau \tau$, Signal Vs Fake, Signal Vs all other backgrounds)
- VBF category and non-VBF $\mu \tau_{\text {had }}: 2$ BDTs combined linearly for non-VBF $\mu \tau_{\text {had }}$ and quadratically for VBF category (Signal Vs $\mathrm{Z} \rightarrow \tau \tau$, Signal Vs all other backgrounds)

Fit analysis strategy

Method	Channel	Category	Region	1 POI fit	2 POI fit
MC-template	$\ell \tau_{\ell^{\prime}}$	non-VBF	SR	\checkmark	\checkmark
			$Z \rightarrow \tau \tau \mathrm{CR}$	\checkmark	\checkmark
			Top-quark CR	\checkmark	\checkmark
		VBF	SR		\checkmark
			$Z \rightarrow \tau \tau$ CR		\checkmark
			Top-quark CR		\checkmark
MC-template	$\ell \tau_{\text {had }}$	non-VBF	SR	\checkmark	\checkmark
		VBF	SR	\checkmark	\checkmark
Symmetry	$\ell \tau_{\ell^{\prime}}$	non-VBF	SR		
		$V B F$	SR	\checkmark	

- Use MVA outputs for each category as final discriminant in the fit to extract the signal strength and upper limits at 95% confidence limits (C.L.)
- Three different type of fit:
- 1 POI: independent fit of $\mathcal{B r}(H \rightarrow \mu \tau)$ and $\operatorname{Br}(H \rightarrow e \tau)$, assuming one $\mathcal{B r}=0$ when fitting the other $\mathcal{B r}$. Use a combination of Symmetry and MC-Template method
- $\mathcal{B r}$ difference in leplep channel: remove the assumption of one $\mathcal{B r}=0$
- 2 POI: simultaneous fit $\mathcal{B r}(H \rightarrow \mu \tau)$ and $\operatorname{Br}(H \rightarrow e \tau)$. Use only MC-Template method and remove the assumption of one $\mathcal{B r}=0$

> A. De Maria

1 POI fit results

- Observed limits above the expected ones for both $H \rightarrow e \tau$ and $H \rightarrow \mu \tau$ signals
- 1.9σ excess observed for $\mathcal{B r}(H \rightarrow \mu \tau)$ while 2.2σ for $\mathcal{B r}(H \rightarrow e \tau)$
- excess in $H \rightarrow \mu \tau(H \rightarrow e \tau)$ driven by non-VBF category of lephad (leplep) channel

2 POI fit results

- 2.5σ excess observed for $\mathcal{B r}(H \rightarrow \mu \tau)$ and 1.6σ for $\mathcal{B r}(H \rightarrow e \tau)$
- Compatibility with SM within 2.2σ
- Observed (expected) upper limits at 95% C.L. on Br are $0.19 \%(0.11 \%)$ for $\mathrm{H} \rightarrow e \tau$ and $0.18 \% ~(0.09 \%)$ for $H \rightarrow \mu \tau$

Interpretation as Yukawa-coupling

- $\mathcal{B r}$ values can be related to non-diagonal Yukawa coupling matrix elements:

$$
\left|Y_{I \tau}\right|^{2}+\left|Y_{\tau \prime}\right|^{2}=\frac{8 \pi}{m_{H}} \frac{\mathcal{B r}(H \rightarrow I \tau)}{1-\mathcal{B r}(H \rightarrow I \tau)} \Gamma_{H}(\mathrm{SM})
$$

- From 2POI fit, $\sqrt{\left|Y_{\tau e}\right|^{2}+\left|Y_{e \tau}\right|^{2}}<0.0012$ and $\sqrt{\left|Y_{\tau \mu}\right|^{2}+\left|Y_{\mu \tau}\right|^{2}}<0.0012$

2 POI fit uncertainty breakdown

2 POI	Impact $\left(\times 10^{2}\right)$ on observed	
Source of uncertainty	$\hat{\mathcal{B}}(H \rightarrow e \tau)$	$\hat{\mathcal{B}}(H \rightarrow \mu \tau)$
Flavour tagging	0.007	0.003
Misidentified background $\left(e \tau_{\text {had }}\right)$	0.021	0.003
Misidentified background $\left(e \tau_{\mu}\right)$	0.058	0.003
Misidentified background $\left(\mu \tau_{\text {had }}\right)$	0.006	0.015
Misidentified background $\left(\mu \tau_{e}\right)$	0.009	0.011
Jet and $E_{\mathrm{T}}^{\text {miss }}$	0.012	0.009
Electrons and muons	0.013	0.005
Luminosity	0.007	0.005
Hadronic τ decays	0.009	0.009
Theory (signal)	0.007	0.007
Theory $(Z$ + jets processes $)$	0.007	0.009
$Z \rightarrow \ell \ell$ normalisation $(e \tau)$	<0.001	<0.001
$Z \rightarrow \ell \ell$ normalisation $(\mu \tau)$	0.002	0.007
Background sample size	0.037	0.023
Total systematic uncertainty	0.051	0.036
Data sample size	0.030	0.027
Total	0.059	0.045

- Analysis dominated by systematic uncertainties, mainly from background sample statistics and Fake background estimation
- Similar conclusion also for 1POI fit

$\mathcal{B r}$ difference measurement

- Symmetry method measures the $\mathcal{B r}(H \rightarrow \mu \tau)-\mathcal{B r}(H \rightarrow e \tau)$ difference, if no assumption on one $\mathcal{B r}=0$ is imposed
- Combining VBF and Non-VBF categories, $\mathcal{B r}(H \rightarrow \mu \tau)-\mathcal{B r}(H \rightarrow e \tau)$ $=0.25 \pm 0.10 \%$
- Symmetry results are compared with 2 POI fit of the MC-template leplep channel
- Compatibility between the two different methods is found to be within 2.3σ

Conclusion

- A search for two LFV signals, $H \rightarrow e \tau$ and $H \rightarrow \mu \tau$, has been presented
- From simultaneous fit of the $H \rightarrow e \tau$ and $H \rightarrow \mu \tau$ signal, observed (expected) upper limits at 95\% C.L. on the branching ratios are 0.19% (0.11%) for $H \rightarrow e \tau$ and $0.18 \%(0.09 \%)$ for $H \rightarrow \mu \tau$; compatibility with SM within 2.2σ
- Results can be also interpreted as limit on the non-diagonal Yukawa coupling matrix elements, $\sqrt{\left|Y_{\tau e}\right|^{2}+\left|Y_{e \tau}\right|^{2}}<0.0012$ and $\sqrt{\left|Y_{\tau \mu}\right|^{2}+\left|Y_{\mu \tau}\right|^{2}}<0.0012$
- $\mathcal{B r}$ difference in leplep channel has also been measured $\operatorname{Br}(H \rightarrow \mu \tau)$ $\mathcal{B r}(H \rightarrow e \tau)=0.25 \pm 0.10 \%$, indicating small but not significant fluctuations
- Observed limits improved by factors of up to 2.4 (1.5) than the corresponding limits for the $H \rightarrow e \tau(H \rightarrow \mu \tau)$ decay from previous ATLAS results. Expected sensitivity for $H \rightarrow e \tau(H \rightarrow \mu \tau)$ signal improved by a factor of about 3.1 (4.1)

Thanks For Your Attention

Backup

Baseline and SRs event selection

Selection	$\ell \tau_{\ell^{\prime}} \quad \ell \tau_{\text {had }}$
Baseline	
VBF	Baseline $\begin{gathered} \geq 2 \text { jets, } p_{\mathrm{T}}^{\mathrm{j}_{1}}>40 \mathrm{GeV}, p_{\mathrm{T}}^{\mathrm{j}_{2}}>30 \mathrm{GeV} \\ \left\|\Delta \eta_{\mathrm{j} j}\right\|>3, m_{\mathrm{ij}}>400 \mathrm{GeV} \end{gathered}$
non-VBF	Baseline plus fail VBF categorisation veto events if $90<m_{\text {vis }}\left(e, \tau_{\text {had-vis }}\right)<100 \mathrm{GeV}$

- Similar selection between MC-template and Symmetry; differences related to the symmetry assumption and definition of CRs.

Previous limits for LFV $H \rightarrow / \tau$ search

- Analysis based on $2015+2016$ dataset, $36 \mathrm{fb}^{-1}$

CMS limits for LFV $H \rightarrow I \tau$ search

[^0]
[^0]: A. De Maria

