Searches for lepton-flavour-violating decays of the Higgs boson into e- τ and $\mu\text{-}\tau$ in ATLAS

ATLAS-CONF-2022-060

Antonio De Maria on the behalf of the ATLAS collaboration

Higgs Hunting 2022

- Analysis searching for two independent signals, $H \rightarrow e\tau$ and $H \rightarrow \mu\tau$, considering both hadronic and leptonic τ decays
- Full leptonic final state (*leplep*), eτ_μ and μτ_e, considering two different estimation methods for major backgrounds:
 - MC-template method: backgrounds estimated using Monte Carlo (MC) templates + normalisation through Control Regions (CRs)
 - *Symmetry* method: backgrounds estimated via data-driven symmetry method
- One lepton and one hadronically decaying τ final state (*lephad*), $e\tau_{had}$ and $\mu\tau_{had}$, considering only *MC-template* method
- First time these results are shown in a conference

 $e au_{had}$ and μau_{had} search

Event selection and categorisation

- Cut-based signal region categorisation, *VBF*/non-VBF, to enhance contribution from main Higgs boson production modes
- MVA analysis in each signal region to enhance sensitivity

Background estimation for *MC-Template* method in leplep final state

- $Z \rightarrow \tau \tau$ and $Top (t\bar{t} + single-top)$ contribution estimated through templates + normalisation through 1-bin CRs separately for VBF and non-VBF categories
 - Top CR: require at least 1 b-jet
 - $Z \rightarrow \tau \tau$ CR: require lead lepton $p_T < 45$ GeV
- $Z \rightarrow \mu \mu$ background estimated with templates + prefit normalisation and related uncertainty from dedicated CR
- Other minor backgrounds estimated from MC
- Misidentified background (*Fake*) estimated via *ABCD* method using lepton charge and isolation

Non-VBF, $Z \rightarrow \tau \tau$ CR

VBF, SR

Symmetry background estimation Implep final state

- Based on the assumption that SM processes are symmetric with respect to e $\leftrightarrow \mu$ exchange
- LFV H decays break this symmetry if $\mathcal{B}r(H \to \mu\tau)$ different from $\mathcal{B}r(H \to e\tau)$
- Use data from one channel to make background prediction for the other channel, after correcting for biases due to experimental effects
- Fakes estimated through *FakeFactor* (FF) based on lepton identification
- Method sensitive to Br differences between two LFV signals; if one Br assumed to be 0, then analysis measures absolute Br value

Background estimation for *MC***-***Template* method in lephad final state

- $Z \rightarrow \tau \tau$ contribution estimated with templates + independent Norm Factors (NFs) for VBF and non-VBF categories
- *Top* contribution estimated through templates and normalisation through shared NFs with leplep in MC-Template fit, or fixed to MC
- $Z \rightarrow \mu\mu$ background estimated with templates + prefit normalisation and related uncertainty from dedicated CR
- Other minor backgrounds estimated from MC
- Fake estimated through FF method based on hadronic τ identification

600 800 1000 1200 1400 1600 1800

400

Non-VBF. SR

m_{ii} [GeV]

MVA analysis strategy

- Different strategies developed for the different final states/methods
- Symmetry method: Neural Networks (NNs) trained separately for VBF and non-VBF categories, but summing over $e\tau_{\mu}$ and $\mu\tau_{e}$ final states
 - for non-VBF category: one NN with 3 nodes \rightarrow signal node used for fit
 - for VBF category: three NNs combined linearly (Signal Vs Z/H $\rightarrow \tau \tau$ +MC fakes, Signal Vs Top + Diboson + H \rightarrow WW, Signal Vs Fake)

• Negative signal for $e\tau_{\mu}$ for Symmetry method expected due to anticorrelation of $\mathcal{B}r(H \to \mu\tau)$ and $\mathcal{B}r(H \to e\tau)$ A. De Maria 7 / 16

MVA analysis strategy

- Different strategies developed for the different final states/methods
- MC-template leplep: Boosted Decision Trees (BDTs) trained separately for VBF and non-VBF categories, but summing over $e\tau_{\mu}$ and $\mu\tau_{e}$ final states
 - 3 BDTs combined linearly (Signal Vs Z/H $\rightarrow \tau\tau$ + Z \rightarrow II, Signal Vs Top + Diboson + H \rightarrow WW, Signal Vs Fake)

MVA analysis strategy

- Different strategies developed for the different final states/methods
- MC-template lephad: BDTs trained separately for VBF, non-VBF categories and for $e\tau_{had}$, $\mu\tau_{had}$ final states
 - non-VBF $e\tau_{had}$: 3 BDTs combined linearly (Signal Vs Z $\rightarrow \tau\tau$, Signal Vs Fake, Signal Vs all other backgrounds)
 - VBF category and *non-VBF* $\mu \tau_{had}$: 2 BDTs combined linearly for *non-VBF* $\mu \tau_{had}$ and quadratically for VBF category (Signal Vs Z $\rightarrow \tau \tau$, Signal Vs all other backgrounds)

Method	Channel	Category	Region	1 POI fit	2 POI fit
MC-template	$\ell au_{\ell'}$	non-VBF	SR	\checkmark	\checkmark
			$Z \rightarrow \tau \tau \ \mathrm{CR}$	\checkmark	\checkmark
			Top-quark CR	\checkmark	\checkmark
		VBF	SR		\checkmark
			$Z \rightarrow \tau \tau \ \mathrm{CR}$		\checkmark
			Top-quark CR		\checkmark
MC-template	$\ell au_{ m had}$	non-VBF	SR	\checkmark	\checkmark
		VBF	SR	\checkmark	\checkmark
Symmetry	$\ell au_{\ell'}$	non-VBF	SR		
		VBF	SR	\checkmark	

- Use MVA outputs for each category as final discriminant in the fit to extract the signal strength and upper limits at 95% confidence limits (C.L.)
- Three different type of fit:
 - 1 POI: independent fit of $\mathcal{B}r(H \to \mu\tau)$ and $\mathcal{B}r(H \to e\tau)$, assuming one $\mathcal{B}r = 0$ when fitting the other $\mathcal{B}r$. Use a combination of Symmetry and MC-Template method
 - $\mathcal{B}r$ difference in leplep channel: remove the assumption of one $\mathcal{B}r = 0$
 - 2 POI: simultaneous fit Br(H → μτ) and Br(H → eτ). Use only MC-Template method and remove the assumption of one Br = 0

- Observed limits above the expected ones for both $H \rightarrow e\tau$ and $H \rightarrow \mu\tau$ signals
- 1.9 σ excess observed for $\mathcal{B}r(H \to \mu\tau)$ while 2.2 σ for $\mathcal{B}r(H \to e\tau)$
 - excess in $H \rightarrow \mu \tau$ $(H \rightarrow e \tau)$ driven by *non-VBF* category of lephad (leplep) channel

2 POI fit results

- 2.5 σ excess observed for $\mathcal{B}r(H \to \mu\tau)$ and 1.6 σ for $\mathcal{B}r(H \to e\tau)$
- Compatibility with SM within 2.2 σ
- Observed (expected) upper limits at 95% C.L. on $\mathcal{B}r$ are 0.19% (0.11%) for $H \rightarrow e\tau$ and 0.18% (0.09 %) for $H \rightarrow \mu\tau$

• Br values can be related to non-diagonal Yukawa coupling matrix elements:

$$|Y_{l\tau}|^2 + |Y_{\tau l}|^2 = \frac{8\pi}{m_H} \frac{\mathcal{B}r(H \to l\tau)}{1 - \mathcal{B}r(H \to l\tau)} \Gamma_H(SM)$$

• From 2POI fit, $\sqrt{|Y_{\tau e}|^2 + |Y_{e\tau}|^2} < 0.0012$ and $\sqrt{|Y_{\tau \mu}|^2 + |Y_{\mu \tau}|^2} < 0.0012$

A. De Maria

2 POI fit uncertainty breakdown

2 POI	Impact ($\times 10^2$) on observed		
Source of uncertainty	$\hat{\mathcal{B}}(H \to e \tau)$	$\hat{\mathcal{B}}(H\to\mu\tau)$	
Flavour tagging	0.007	0.003	
Misidentified background ($e\tau_{had}$)	0.021	0.003	
Misidentified background $(e\tau_{\mu})$	0.058	0.003	
Misidentified background ($\mu \tau_{had}$)	0.006	0.015	
Misidentified background ($\mu \tau_e$)	0.009	0.011	
Jet and $E_{\rm T}^{\rm miss}$	0.012	0.009	
Electrons and muons	0.013	0.005	
Luminosity	0.007	0.005	
Hadronic τ decays	0.009	0.009	
Theory (signal)	0.007	0.007	
Theory (Z + jets processes)	0.007	0.009	
$Z \rightarrow \ell \ell$ normalisation $(e\tau)$	< 0.001	< 0.001	
$Z \rightarrow \ell \ell$ normalisation ($\mu \tau$)	0.002	0.007	
Background sample size	0.037	0.023	
Total systematic uncertainty	0.051	0.036	
Data sample size	0.030	0.027	
Total	0.059	0.045	

- Analysis dominated by systematic uncertainties, mainly from background sample statistics and Fake background estimation
- Similar conclusion also for 1POI fit

- Symmetry method measures the $\mathcal{B}r(H \rightarrow \mu\tau)$ $\mathcal{B}r(H \rightarrow e\tau)$ difference, if no assumption on one $\mathcal{B}r = 0$ is imposed
- Combining VBF and Non-VBF categories, $\mathcal{B}r(H \rightarrow \mu\tau)$ $\mathcal{B}r(H \rightarrow e\tau)$ = 0.25±0.10 %
- Symmetry results are compared with 2 POI fit of the MC-template leplep channel
- Compatibility between the two different methods is found to be within 2.3σ

- A search for two LFV signals , H
 ightarrow e au and $H
 ightarrow \mu au$, has been presented
- From simultaneous fit of the $H \rightarrow e\tau$ and $H \rightarrow \mu\tau$ signal, observed (expected) upper limits at 95% C.L. on the branching ratios are 0.19% (0.11%) for $H \rightarrow e\tau$ and 0.18% (0.09 %) for $H \rightarrow \mu\tau$; compatibility with SM within 2.2 σ
- Results can be also interpreted as limit on the non-diagonal Yukawa coupling matrix elements, $\sqrt{|Y_{\tau e}|^2 + |Y_{e\tau}|^2} < 0.0012$ and $\sqrt{|Y_{\tau \mu}|^2 + |Y_{\mu \tau}|^2} < 0.0012$
- $\mathcal{B}r$ difference in leplep channel has also been measured $\mathcal{B}r(H \to \mu\tau)$ - $\mathcal{B}r(H \to e\tau) = 0.25 \pm 0.10$ %, indicating small but not significant fluctuations
- Observed limits improved by factors of up to 2.4 (1.5) than the corresponding limits for the H → eτ (H → μτ) decay from previous ATLAS results. Expected sensitivity for H → eτ (H → μτ) signal improved by a factor of about 3.1 (4.1)

Thanks For Your Attention

Backup

Selection	$\ell au_{\ell'}$	$\ell au_{ m had}$			
	exactly $1e$ and 1μ , OS	exactly 1ℓ and $1\tau_{had-vis}$, OS			
Baseline	$ au_{ m had}$ -veto	$ au_{ m had}{ m Tight ID}$			
		Medium eBDT ($e\tau_{had}$)			
	<i>b</i> -veto	<i>b</i> -veto			
	$p_{\rm T}^{\ell_1} > 45 (35) {\rm GeV}$ MC-template (Symmetry method)	$p_{\rm T}^\ell > 27.3 { m GeV}$			
	$p_{\rm T}^{\ell_2} > 15 {\rm GeV}$	$p_{\rm T}^{\tau_{\rm had-vis}} > 25 {\rm GeV}, \eta^{\tau_{\rm had-vis}} < 2.4$			
	$30 \text{GeV} < m_{\ell_1 \ell_2} < 150 \text{GeV}$	$\sum \cos \Delta \phi(i, E_{\rm T}^{\rm miss}) > -0.35$			
	o o track (a) (cluster (a) 1 or a ration 1)	$i = \ell, \tau_{\text{had-vis}}$			
	$0.2 < p_{\rm T}^{\rm max}(\ell_2 = e)/p_{\rm T}^{\rm cluster}(\ell_2 = e) < 1.25$ (MC-template)	$ \Delta \eta(\ell, \tau_{\text{had-vis}}) < 2$			
	track d_0 significance requirement (see text)				
	$ z_0\sin\theta < 0.5\mathrm{mm}$				
	Baseline				
VBF	≥ 2 jets, $p_{T}^{j_{1}} > 40$ GeV, $p_{T}^{j_{2}} > 30$ GeV				
	$ \Delta \eta_{\rm jj} > 3, m_{\rm jj} > 400 {\rm GeV}$				
	Baseline plus fail VBF categorisation				
non-VBF	-	veto events if			
	-	$90 < m_{\rm vis}(e, \tau_{\rm had-vis}) < 100 { m GeV}$			

• Similar selection between MC-template and Symmetry; differences related to the symmetry assumption and definition of CRs.

• Analysis based on 2015+2016 dataset, 36 fb⁻¹

CMS limits for LFV $H \rightarrow l\tau$ search

