IN2P3

PArISROC

()mega

Photomultiplier Array Integrated in Sige Read Out Chip

Selma Conforti Frédéric Dulucq Mowafak El Berni Christophe de La Taille Gisèle Martin-Chassard Wei Wei * Wang Zheng * http://omega.in2p3.fr * IHEP Beijing FEE09 Montauk

CSNSM CAL LILLERN

Orsay Micro Electronic Group associated

Microelectronics at in2p3

- Large force of microelectronics experienced engineers (~50)
- Expertise in detectors, chip design and test
- Experience in designing and building large particle physics detectors (trackers, calorimeters...)
- Common Cadence tools

- Actions :
 - Building blocks (SiGE, 130nm)
 - Networking
 - poles

mega

Motivation for poles

- Continuous increase of chip complexity (SoC, 3D...)
- Importance of critical mass
 - Daily contacts and discussions between designers
 - Sharing of well proven blocks
 - Cross fertilization of different projects
- Creation of poles at in2p3
 - OMEGA at Orsay
 - Strasbourg
 - Dipole Lyon-Clermont

mega

Orsay Micro-Electronics Groups Associated mega A strong team of 10 ASIC designers... - = 20% of in2p3 designers - = 60% of department research engineers - A team with critical mass : pole created in 2007 = OMEGAMAROC 2 - Expertise in low noise, low power high level of integration ASICs - 2 designers/ project 2 projects/designer Regular design meetings SKIROC ...Within an electronics departmt of 50^{HARDROC} Support for tests, mesaurements, PCBs... A steady production

- A strong on-going R&D
- Building blocks SiGe 0.35µm

SPIROC

Orsay micro-electronics team

- 8 research engineers (1 IR0, 2 IR1, 5 IR2)
- 1 phD student
- 1 visitor from China IHEP Beijing

<u> Mega</u>

Recent chips

- Several chips developped for ATLAS LAr, OPERA, LHCb, CALICE in BiCMOS 0.8µm and installed on experiments
- Turn to Silicon Germanium 0.35 µm SiGe BiCMOS technology in 2005
- Readout for MaPMT and ILC calorimeters
- Very high level of integration : System on Chip (SoC)
- Parallel activity of building blocks

C. de La Taille : PARISROC FEE09 Montauk

<u>)mega</u>

MAROC for ATLAS luminometer

- Absolute measurement of the luminosity
- Roman Pots:
 - 0.5mm² scintillating fibers
 - 1 RP = 10*64 fibers in U + 10*64 fibers in V
 - 240m from the Interaction Point
- Multi Anode PM Tubes
 - 64ch Hamamatsu H7546
 - HV = 800-950 V

<u> Mega</u>

Active board pictures

<u> Mnega</u>

MAROC2 chip bounded at CERN

64 ch PMT

21 may 09

MAROC Efficiency curves

The front-end ASICs : the ROC chips

PMm² project (1)

PMm²: "Innovative electronics for array of photodetectors used in High Energy Physics and Astroparticles".

R&D program funded by French national agency for research (ref. ANR-06-BLAN-0186) (LAL, IPNO, LAPP and Photonis) (2007-2010)

Application : large water Cerenkov neutrino (more generally: exp. with large number of PMs)

mega

C. Marmonier, NNN05, France, April 2005 LIGHT06, Israel, January 2006

Size (Diameter)	20	20(17)	12	Inch	
Photocathode area	1660	1450	615	cm ²	
Quantum efficiency	20	20	24	%	
Collection efficiency	60	60	70	%	
Cost	2500	2500	800	€	
	12.6	14.4	7.7	€ /PE _U /cm ²	
	<u>Cost/cm² per useful photoelectron</u>				
		Cost / (cm ² x Q	(E × CE)		
12" is better in SER and timing 12" provides a higher granularity					
But, the number of channels is increased					
21 may 09	C. de La Taille :	PARISROC FEE09 M	lontauk	Joël Pouthas IPN Org	

PMm² project (2)

- The project proposes to segment the very large surface of photodetection in macro pixels made of 16 photomultiplier tubes connected to an autonomous front-end electronics.
- Replace large PMTs (20") by groups of 16 smaller ones (12") with central ASIC
 - Independent channels
 - charge and time measurementoject
 - water-tight, common High Voltage
 - Only one wire out (DATA + VCC)

Target :

- 1pe efficiency
- Triggerless
- 1ns time resolution
- High granularity
- scalability
- Low cost

PARiSROC description (1)

- Characteristics :
 - 16 preamplifier inputs
 - Variable gain :1 \rightarrow 8 (3bits) (common on 16 channels)
 - PMTs gain adjustment by a factor 4 (8 bits) (channel by channel)
 - Input dynamic range : $0 \rightarrow 300$ pe ($0 \rightarrow 50$ pC) with 1% linearity
 - 16 trigger outputs:
 - Fast shaper (τ =15ns) + low offset discriminator
 - Threshold provided by common internal 10bit DAC (1/3 pe)
 - "OR" of 16 triggers output
 - 1 digitized and multiplexed charge output :
 - Slow shaper with variable shaping time (τ =50ns,100ns,200ns)
 - Dual Track & Hold + multiplexed analog output or internal ADC
 - 8 to 12-bit internal ADC (Wilkinson) for charge and fine time measurement
 - Internal TDC : 24 bits counter (coarse) + fine 1 ns
 - One serial output : 2channel number + BCID + Charge + time
 - Dissipation : 5mW/ch

One channel synoptic

PARiSROC architecture

- SCA management like FIFO
- Timestamp 24b counter @ 10 MHz (1.67s)
- 40 MHz clock for ADC + SCA management
- 10 MHz clock for Timestamp + Readout

Selective Read Out ()mega Only hit channels are readout T op Manager Acquisition ` Readout clock : 10 MHz C onversion Switched Capacitor Max Readout time (16 ch Arroy Analog to Digital Slow shaper signal hit) : 100 us Converter 52 bits of data / hit channel TDC ramp signal (all gray) Registers Readout format (MSB first) 1001 Shift. DAO Register 0111 0101 - (MSB) 4 bits channel # + 24 Read-Out bits timestamp - 12 bits charge + 12 bits time (LSB)

PARiSROC layout

Technology :

<u> Mega</u>

AMS SiGe 0.35μm

<u>Size</u>: 5mmX3.4mm

Package :

CQFP160

Preamplifier measurements

Preamp	G=8	G=14
Vout(1pe)	5 mV	7.3 mV
Rms noise	1 mV	1.2 mV
Noise in pe	0.2	0.16
SNR	5	6.2

• High speed : tr~5ns

- 10 MHz clock : doubles the noise
- Low frequency noise

Preamplifier measurements

• Gain adjustment linearity : 2% on 8 bits

C. de La Taille : PARISROC FEE09 Montauk

<u> Mega</u>

Fast shaper and discriminator

Fast shaper	G=8	G=14
Vout (1pe)	25 mV	35 mV
Rms noise	2.5 mV	2.5 mV
SNR	10	14
Rise time	7 ns	7 ns

Trigger efficiency

- Trigger down to 100 fC and up to 5 pC
- Noise ~10 fC
- Limited to ${\sim}10~\sigma$ noise due to discriminator coupling

<u>)mega</u>

Discriminator coupling

- Coupling around 25 mV ⇔ 100 fC
 - Couples to the input through Vss or Vdd_pa

Slow shaper

Slow shaper	50ns	100ns
Vout (1pe)	21 mV	13 mV
Rms noise	3.3 mV	2.6 mV
SNR	6.4	5
Rise time	28 ns	50 ns

Low frequency to be understood and removed (power supply noise ?)

Internal Wilkinson ADC

- Wilkinson ADC well suited to multichannel conversion
- Very good uniformity and linearity

C. de La Taille : PARISROC FEE09 Montauk

<u> (mega</u>

Delay box measurement

Overall behaviour

mega

8 bit ADC

G_pa=14 (Cin=7pF, Cf=0.5pF) Slow shaper=50ns DAC_delay: bit<0>=1 bit<2>=1 LSB=4.26mV Min ADC count=33 at 3 pe Max ADC count=241 at 50pe Residuals: from 2 to 3 ADC unit

12 bit ADC

G_pa=14 (Cin=7pF , Cf=0.5pF) Slow shaper=50ns DAC_delay: bit<0>=1 bit<2>=1 LSB=269uV Min ADC count=509 at 3 pe Max ADC count=3873 at 50pe Residuals: from 21 to 54 ADC unit

Overall behaviour

21 may 09

Fine TDC measurement

- Fine time digital data output
- Rms of clean part : rms = 0.62 ns

[S. Drouet IPNO] Mega

Fine time: two ramps scheme

- ➔ 2 separate ramps to avoid glithces
- → Need to have a signal to inform which TDC is active and linear. This signal will be sample during "Hold" of TDC (asynchronously) => need overlap to solve metastability.

<u>()mega</u>

Fine time: Result...

Measurement with PMT [B. Genolini IPNO]

- SPE spectrum with 10" PMT X
 - Complete chain : autotrigger + 10bit internal ADC
- Time measurment with 2" PMT (XP3102)
 - Trigger output jitter : 600 ps

Conclusion and next steps

- Good overall performance of PARISROC
 - Autotrigger and internal digitization
 - Good operation with PMT
 - Demonstrator being built in Orsay for tests with detector
 - Complex chip => long measurements
- A second version will be done in sept 09
 - Possible PM gain increase
 - reduce dead time for Water Cerenkov needs : 8-9 bits ADC
 - Increase dynamic range with 2 gains 8-9-10 bits
 - Double fine TAC and reduce clock noise
- Chip being evaluated by several experiments : Megaton, DUSEL, LHASSO...

mega