

Université de Paris

HOM-damping studies of a 5-Cell Elliptical Superconducting Cavity for PERLE

Carmelo Barbagallo

Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab)- Accelerator Physics group – RF section Université Paris-Saclay

PERLE SRF Meeting, 03 December 2021

Acknowledgments: P. Duchesne, N. Hu, W. Kaabi, G. Olry, F. Zomer (IJCLab), S. Gorgi Zadeh (Rostock University)

FACULTÉ

université

CNrs

- What is PERLE?
- PERLE SRF Cavity JLab design 2.
- HOM numerical simulations (CST Studio Suite[®]) 3.
- 3D-Eigenmode/Wakefield simulations JLab Case 1 Bare Cavity 4.
- 5. HOM coupler power transmission studies and coupler optimization
- 6. HOM-damping studies
- Future perspectives 7.
- Conclusions 8.

What is PERLE?

PERLE (Powerful Energy Recovery Linac for Experiments): multi-turn ERL based on SRF technology to be studied and later host at **Orsay** (France).

Target Parameter [2]	Unit	Value	
Injection energy	MeV	7	
Electron beam energy	MeV	500	
Normalized Emittance Υεχ,y	mm∙mrad	6	
Average beam current	mA	20	
Bunch charge	рС	500	
Bunch length	mm	3	
Bunch spacing	ns	25	
RF frequency	MHz	801.58	
Duty factor	CW (Continuous Wave)		

Cnrs

2 Linacs (Four 5-Cell 801.58 MHz SC cavities)

•

- 3 turns (160 MeV/turn): 3 passes 'up' to reach the maximum energy, 3 passes 'down' for energy recovery
- Maximum electron beam energy: 500 MeV

IJCLab is today leading the PERLE project in the context of a collaboration between international partners:

PERLE SRF Cavity – JLab design

- **Objective:** design and prototyping of a full dressed SRF cavity required in CW • operation, with adequate HOM damping. Impedances are for bare cavity and the peaks are
- First 801.58 MHz 5-cell elliptical Nb . cavity already fabricated at JLab on October 2017 (JLab Case 1 Cavity)

Endcell contours

03/12/2021

	Parameters*	JLab Case 1	JLab Case 2	JLab Case 3
	Frequency [MHz]	801.58	801.58	801.58
	Number of Cells	5	5	5
	Material	Bulk Nb.	Bulk Nb.	Bulk Nb.
	Temperature [K]	2.0	2.0	2.0
	Cavity active length [mm]	917.911	935.536	935.536
	Mid-cell length [mm]	187.107	187.107	187.107
	End-cell length [mm]	178.295	187.107	187.107
	R/Q [Ω]	524.25	520.63	522.70
	(R/Q)/(cell number) [Ω]	104.85	104.13	104.54
	Geometry Factor (G) [Ω]	274.505	201.490	278.112
	G*(R/Q) [Ω²]	143909.2	149901.7	145369.1
	(R/Q)*G/(cell number) [Ω²]	28781.85	29980.35	29073.83
	B_{pk}/E_{acc} (mid-cell) [mT/(MV/m)]	4.62	4.70	4.66
	E _{pk} /E _{acc} (mid-cell) [-]	2.38	2.30	2.27
	Iris radius [mm]	65	65	65
	Beam Pipe radius [mm]	65	65	65
	Mid-cell equator diameter [mm]	328	328	328
	End-cell equator diameter [mm]	328	328	325
	Wall angle [degree]	0	11.95	0
	Cell-to-cell coupling of mid cells [%]	2.93	2.92	2.91
	$k_{ }(\sigma_z=3~{ m mm})$ [V/pC]	2.74	2.4	2.74
	Cutoff TE11 [GHz]	1.35	1.35	1.35
	Cutoff TM01 [GHz]	1.77	1.77	1.77
Note: $\Omega_{-} \sim 10^7 \rightarrow 50$ kW allows for sufficient margin during				

it margin uuring transients \rightarrow detuning ~ 51.9 Hz

FACULTÉ

DIORSAV

université

PADIS-SACIAN

DES SCIENCES

Ъ

Université de Paris

- HOM-damping for ERLs is a challenge due to the presence of many turns.
- 3D-Eigenmode simulations (bare and equipped cavity)
 - Main RF parameters (table slide 4)
 - Identification of dangerous HOMs
 - R/Q and field distribution
- 3D-Wakefield simulations (cavity-beam interaction)
 - Longitudinal impedance (Z_L [Ω])
 - Transverse impedance ($Z_T[\Omega/m]$)
- HOM-coupler power transmission
 - S-parameter [dB] calculation
 - Coupler optimization (recently started)

All simulations were done for JLab Case1 Cavity

03/12/2021

3D-Wakefield simulations – JLab Case 1 Bare Cavity

- E-field component along cavity axis
- Trapped mode can interact with the subsequent bunch
- Relative inefficient coupling of the TM012 $\pi\text{-mode}$ to the beam tubes

TM dipole modes (like TM110, TM111, TM120)

- Strong longitudinal E-field component off axis.
- Possible deflection and subsequent beam resonant effect.

TE dipole modes (like TE111, TE112)

• Theoretically no longitudinal E-field component on and off axis.

3D-Wakefield simulation:

Longitudinal impedance [Ω]

$$Z_{\rm L}(\mathbf{r},\omega) = \frac{1}{c} \int_{-\infty}^{\infty} w_{\rm L}(\mathbf{r},s) \, e^{-\frac{j\omega s}{c}} ds$$

Transverse impedance [Ω/m]

$$\mathbf{Z}_{\mathrm{T}}(\mathbf{r},\omega) = \frac{-j}{r_0 c} \int_{-\infty}^{\infty} \mathbf{w}_{\mathrm{T}}(\mathbf{r},s) \, e^{-\frac{j\omega s}{c}} ds$$

Wakefield simulation parameters JLab Case 1				
Beam velocity β [-]	1			
RMS bunch length [mm]	30			
Wake length [m]	250			
Number of samples [-]	1E+06			

03/12/2021

HOM coupler power transmission studies

CNIS UNIVERSITE DES SCIENCES PARIS-SACLAY D'ORSAY Université de Paris

S-parameters [dB] simulation (frequency domain solver)

For a device with n ports

TM01-TEM transmission

- The notch effect of all couplers is tuned to 801.58 MHz for the monopole coupling.
- Couplers still need to be optimized to deliver a higher value of transmission for the TM011 and TM012 passband.

TE11-TEM transmission

 Hook coupler gives a higher transmission than DQW coupler for the TE111 and TM110 passband.

Why do we need to optimize HOM couplers?

HOM coupler models used in our simulations were initially designed for a beam tube radius of R=78 mm (801.58 MHz Rostock University cavity).

- JLab 5-cell cavity has a 65 mm beam tube radius.
- S-curves are very sensitive to geometrical changes of couplers.
- Installation of current couplers in R=65 mm tubes: drop in performance in certain frequency ranges where HOMs need to be damped.

Optimization is needed: DQW coupler can assure a high transmission for both first higher order monopole and dipole passband.

Université

de Paris

HOM coupler optimization – Methods

Cnrs

CST Studio Suite

- Solver: Frequency domain solver
- Optimizer algorithm: Trust region framework, CMA evolution strategy...

STEP 1: parameter sweep analysis (one-parameter-at-a-time)

- Build a parametric geometry (max 40 parameters) of the HOM coupler
- Each parameter corresponds to a specific part of the HOM coupler equivalent circuit
- See the influence of each geometrical parameters on S-curves
- Find out which parameters play a more important role in changing S-curves

STEP 2: CST optimizer to fine-tune

- Definition of the objective functions (minimization of the highest impedances)
- Optimization of multiple parameters at the same time (max 5 parameters).

HOM-damping schemes

Université de Paris

5-cell cavity + HOM couplers

5-cell cavity + HOM couplers + SPL Power Coupler

Other suitable HOM-damping schemes :

- Rectangular waveguide dampers (A)
- JLab-Type coaxial couplers (B)
- TESLA-Type coaxial couplers (C)
- Add absorbers in cavity-interconnecting beam tubes (D)
- Coupling through Fundamental Power Coupler (E)

•

HOM-damping studies

Objective: extract the energy of the dangerous HOMs from the cavity.

- 2 Hook + 2 Probe couplers configuration seems to provide a better damping than the DQW couplers configurations. However, DQW couplers have still to be optimized!
- Peaks are not fully resolved. Extrapolated impedance spectra need to be calculated (JLab's method) [9]
- Trapped TM012 mode was not damped in the investigated configurations (end-cells modification is needed)

FACULTÉ

DIORSAN

université

DES SCIENCES

Cnrs

Average HOM power deposited by the beam in the cavity

$$P_{HOM} = k_{||,HOM} Q_b I_0$$

If the main spectral line of the beam falls on the HOM resonance of the cavity, the voltage increases as well as the HOM power

 $P_{HOM} = \frac{R}{Q} Q_L I_0^2$

Objective 1: estimate the HOM power once we will have the bunch spectrum of the beam available.

Objective 2: doing a thermal study on HOM couplers

cnrs

RF and beam parameters	PERLE	PERLE @ Orsay
Q_b	320 pC	500 pC
I ₀	15 mA	20 mA
σ_{z}	3 mm	3 mm
$k_{ }$	2.742 V/pC	2.742 V/pC
$k_{ ,0}$	0.657 V/pC	0.656 V/pC
P _{HOM} (1 pass)	10.009 W	20.862 W

Experimental activities:

- Cavity end-cell modifications (improve the damping of TM011 and TM012 mode)
 - Do we plan to do perform the modifications at JLab or at CERN, where and when (Q1 2022)?
 - Measurements on the cavity ٠
- Tube modification to install HOM couplers
- Realization of the HOM couplers and installation on the cavity
- Integration of the PERLE cavity in the SPL cryomodule
- Thermal treatments (Nitrogen doping) on the cavity
- Integration of the SPL Power Coupler
- Test of the full dressed cavity on the vertical cryostat

Cnrs

- Eigenmode and wakefield analyses were carried-out in CST Studio Suite[®] to investigate on the HOM behavior of PERLE Cavity
- Potentially dangerous monopole and dipole HOMs were identified and classified until 2.4 GHz. A trapped monopole HOM was found at ~2.25 GHz
- HOM-damping scheme studies: 2 Hook + 2 Probe couplers configuration gives a better damping of both monopole and dipole HOMs than the two DQW coupler configurations. However, couplers need still to be optimized.

Future perspectives:

- Optimization of the cavity end-cells to improve the coupling of the TM012 π -mode to the beam tubes
- Optimization of HOM couplers, and study of other HOM couplers (JLAB, TESLA)
- Thermal studies for HOM couplers (HOM power and dissipation)
- Planning of the experimental activities (CERN and JLab)

Cnrs

- [1] D. Angal-Kalinin et al., PERLE, Powerful Energy Recovery Linac for Experiments, CDR, Journal of Physics G: • Nuclear and Particle Physics, 45(6):065003, 2018.
- [2] W. Kaabi, PERLE: A High-Power Energy Recovery Facility at Orsay, February 2021.
- [3] F. Marhauser, Next generation HOM-damping, Superconductor Science and Technology, 30(6):063002, 2017.
- [4] F. Marhauser, PERLE Cavity Design and Results and First Thoughts on HOM-Couplers, PERLE HOM Coupler Meeting, October 2019, CERN.
- [5] T. Wangler, RF Linear Accelerators, John Wiley & Sons, 2008.
- [6] CST Studio Suite manual, CST Studio, 2021.
- [7] F. Marhauser, Higher Order Modes (HOMs), SRF Hands-On Course at JLab, January 19-30, 2015, Newport News. VA.
- [8] R. Calaga and S.G. Zadeh, HOM Damping for PERLE, 2019.
- [9] F. Marhauser, Enhanced Method for Cavity Impedance Calculations, Proceedings of PAC09, Vancouver, BC, ٠ Canada, 2009.

Thank you for your attention!

Laboratoire de Physique des 2 Infinis

Laboratoire de Physique des 2 Infinis Irène Joliot-Curie IJCLab - UMR9012 - Bât. 100 - 15 rue Georges Clémenceau 91405 Orsay cedex

Backup slides

03/12/2021

HOM numerical simulations: methods

The **eigenmodes** of a resonator in a non-excited source-free and lossless medium are computed by solving the Helmholtz equations:

Helmholtz equations

 $\nabla^2 \mathbf{E} + \omega^2 \mu \varepsilon \mathbf{E} = 0$

Boundary conditions

$$\mathbf{n} imes \mathbf{E} = 0$$
 and $\mathbf{n} \cdot \mathbf{H} = 0$ on $\partial \mathbf{\Omega}_{ ext{PEC}}$

$$\nabla^2 \underline{\mathbf{H}} + \omega^2 \mu \varepsilon \underline{\mathbf{H}} = 0$$
 $\mathbf{n} \cdot \underline{\mathbf{E}} = 0$ and $\mathbf{n} \times \underline{\mathbf{H}} = 0$ on $\partial \Omega_{\text{PMC}}$

DES SCIENCES

Université de Paris

université

Cnrs

Cavity-beam interaction: wakefields in time domain or impedances in frequency domain. The long-range wakefield commonly corresponds to the high impedance peaks and can lead to coupled-bunch instability issues.

03/12/2021

Assumption: PEC (Perfect Electric Conductor) on conducting walls (Nb) and interior domain of vacuum

20