

DYTurbo interface for xFitter

Stefano Camarda

xFitter workshop – 10th March 2022

DYTurbo project

Optimised version of DYNNLO, DYqT, DYRes with improvements in

Software	Numerical integration
Code profiling	Quadrature with interpolating functions
Loop vectorisation	Factorisation of integrals
Hoisting	Analytic integration
Loop unrolling	
Multi-threading	

- The main application is the measurement of the W mass at the LHC, Other applications: PDF fits including qt-resummation for cross-section predictions, $\sin^2\theta_W$, $\alpha_s(m_Z)$
- A few active developers (SC, Giancarlo Ferrera, Leandro Cieri, Manuel Der) and several users helping with testing, scripts, etc...
- Widely used in ATLAS, CMS, LHCb, primary usage are W,Z NNLO predictions

DYTurbo project

- Home
- Repo
- Downloads
- Contact

Fast predictions for Drell-Yan processes including qt-resummation

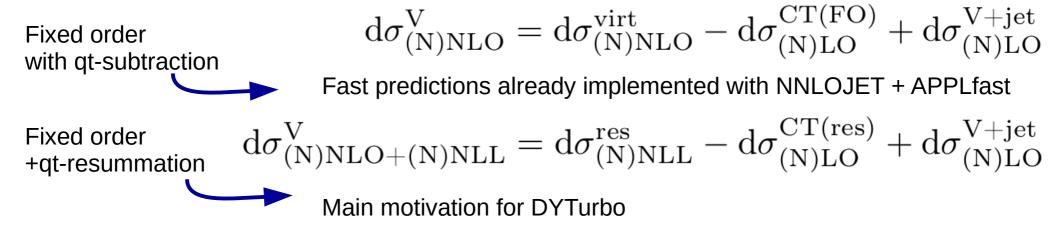
Installation instructions

Download the source code

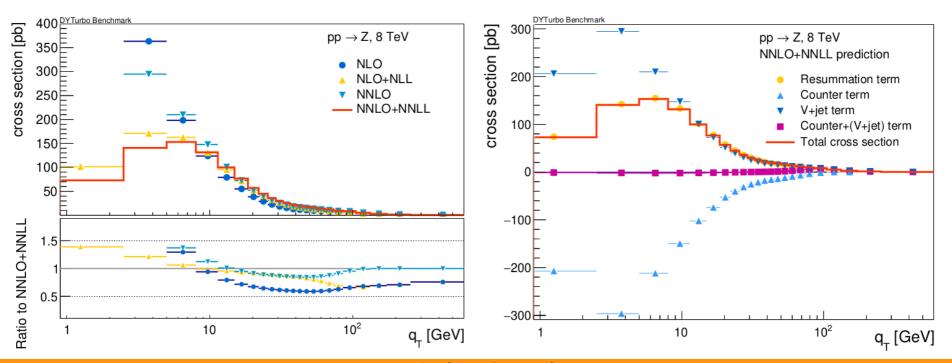
- dyturbo-1.1.tar.gz
- Public code available on HEPForge (https://dyturbo.hepforge.org/)
- Original reference"
 - "DYTurbo: Fast predictions for Drell-Yan processes" Eur.Phys.J.C 80 (2020) 3, 251
- Recent developments:
 - * "Drell—Yan lepton-pair production: q_T resummation at N3LL accuracy and fiducial cross sections at N3LO", Phys.Rev.D 104 (2021) 11, L111503
 - → "Fiducial perturbative power corrections within the q_T subtraction formalism", arXiv:2111.14509

Drell-Yan cross section

DYTurbo can compute the DY cross section at

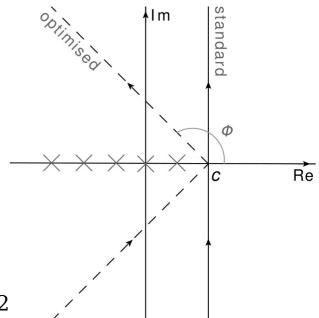


b-space CdFG resummation formalism



Numerical integration improvements

- Fast x-space to Mellin-space integral transform of PDFs based on Gauss-Legendre quadrature, coefficients in Mellin space evaluated through their large-N expansion
- Acceptance corrections evaluated by factorising the integration over lepton-decay angular variables in the LO cross section



$$\sigma_{LO} = a + b\cos(\theta) + c\cos^2(\theta) \rightarrow a\theta_0 + b\theta_1 + c\theta_2$$

 $\textbf{a Analytic integration over} \begin{cases} \theta_0 = \int \mathrm{d}\Omega\,\Theta_K\,, \theta_1 = \int \mathrm{d}\Omega\,\Theta_K\,\cos\theta_\ell\,, \\ \theta_2 = \int \mathrm{d}\Omega\,\Theta_K\,\cos^2\theta_\ell \end{cases}$

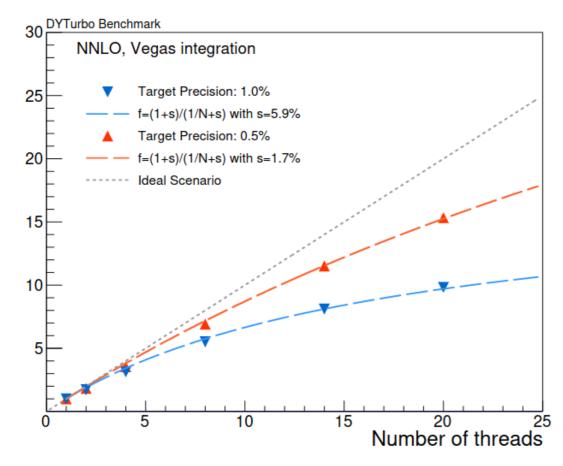
$$\int \mathrm{d}x \, x J_0(x) = x J_1(x)$$

$$\int_{q_{\rm T}^0}^{q_{\rm T}^1} dq_{\rm T} \, 2q_{\rm T} \, \mathcal{W}(q_{\rm T}, m) =$$

$$\frac{m^2}{s} \int_0^{\infty} db \, \frac{1}{2} \left[q_{\rm T}^1 J_1(bq_{\rm T}^1) - q_{\rm T}^0 J_1(bq_{\rm T}^0) \right] \, \tilde{\mathcal{W}}(b, m)$$

Multithreading time performance

Measured the performance of the multi-threading implementation



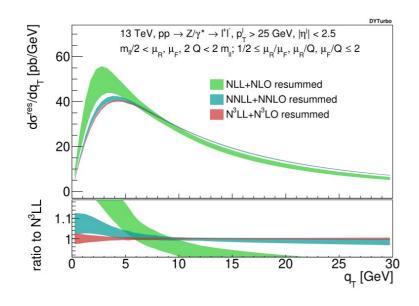
Speedup

Good efficiency (~ 1) thanks to small overhead

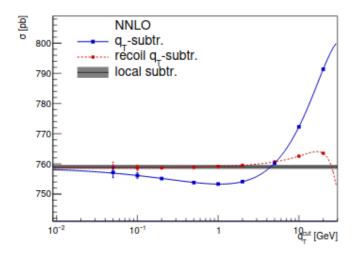
s \sim 2-5% is the nonparallelisable fraction

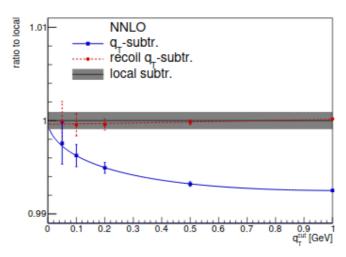
Larger gain from multi-threading when the required precision is higher

Recent DYTurbo results



- N3LL q_T resummation
- Fiducial power corrections
- N3LO fiducial cross sections (depend on the availability of external V+jet NNLO predictions)





Order	N^3LO
q_T subtr. $(q_T^{\text{cut}} = 4 \text{GeV})$	$747.1 \pm 0.7\mathrm{pb}$
recoil q_T subtr.	$745.7 \pm 0.7\mathrm{pb}$

xFitter interface

- DYTurbo-xFitter interface developed in two xFitter branches:
 - dyturbo-reaction
 - alphas-scan
- yaml settings currently include scales and non-perturbative parameters

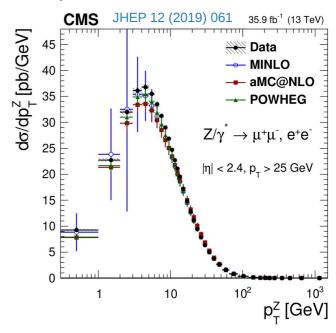
```
# DYTurbo:
order: 2  # Perturbative order in QCD: 0 for LL, 1 for NLL+NLO, 2 for NNLL+NNLO, 3 for NNNLL+NNLO
muR: 1.  # Renormalization scale
muF: 1.  # Factorization scale
muRes: 1.  # Resummation scale
g1: 1  # Universal Gaussian non-perturbative form factor
g2: 0  # Q-dependent Gaussian non-perturbative form factor
g3: 0  # x-dependent Gaussian non-perturbative form factor
Q0: 1  # Reference scale at which the g2 contribution is zero
```

- Two main operational modes for Z/γ^*
 - → Full-lepton phase space cross sections in p_T ,y,m: DYTurbo can provide the full fixed order or resummed prediction
 - → Fiducial phase space cross sections in p_T ,y,m: include V+jet APPLgrid, DYTurbo computes the rest
- Lepton variables (for W) are possible, but currently rather slow

Measure $\alpha_s(m_z)$ from semi-inclusive DY

Desirable features for a measurement of $\alpha_s(m_z)$ [PDG]

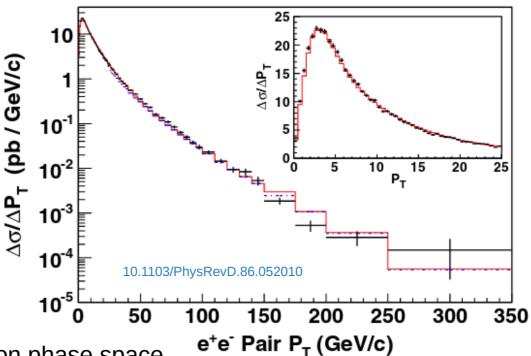
- Large observable's sensitivity to $\alpha_s(m_z)$ compared to the experimental precision
- High accuracy of the theory prediction
- Small size of non-perturbative QCD effects
- Measuring $\Lambda_{\overline{\rm MS}}$ from semi-inclusive (radiation inhibited) DY cross sections was first proposed in Nucl. Phys. B 349 (1991) 635-654 (Catani, Marchesini, Webber), in the context of Monte Carlo parton showers
- Here we consider as semi-inclusive observable the Z $p_{\scriptscriptstyle T}$ distribution in the Sudakov region



- Inclusive observables benefit from higher theory accuracy and smaller non-pQCD effects, but usually smaller experimental sensitivity to $\alpha_s(m_z)$
- Exclusive observables have higher experimental sensitivity, but generally larger theory uncertainties
- Semi-inclusive observables may take benefits from both categories

CDF measurement of Z-boson p_T

■ The CDF measurement of Z-boson p_T in full-lepton phase space is an ideal candidate for testing the $\alpha_s(m_Z)$ extraction, and the xFitter-DYTurbo interface



The measurement is extrapolated to full-lepton phase space

using measured angular coefficients

pp collisions

 $\frac{d\sigma}{dpdq} = \frac{d^3\sigma}{dp_T dydm} \sum_i A_i(y, p_T, m) P_i(\cos\theta, \phi)$ flavour-initiated

→ reduced contribution from heavy-flavour-initiated production compared to pp collisions

$$\begin{array}{ccc} b\overline{b} & \rightarrow & Z:~0.4\% \\ c\overline{c} & \rightarrow & Z:~1.3\% \end{array}$$

Theory predictions

Theory predictions evaluted with DYTurbo: public code implementing CdFG qt-resummation in b-space J_{-}^{∞} J_{-}^{∞} (res.) J_{-}^{∞} (fin.)

$$\frac{d\hat{\sigma}_{F\,ab}}{dq_T^2} = \frac{d\hat{\sigma}_{F\,ab}^{(\text{res.})}}{dq_T^2} + \frac{d\hat{\sigma}_{F\,ab}^{(\text{fin.})}}{dq_T^2}$$

$$\frac{d\hat{\sigma}_V^{(\text{res.})}}{dq_T^2}(q_T, M) = \frac{M^2}{\hat{s}} \int_0^\infty db \, \frac{b}{2} \, J_0(bq_T) \, \mathcal{W}^V(b, M)$$

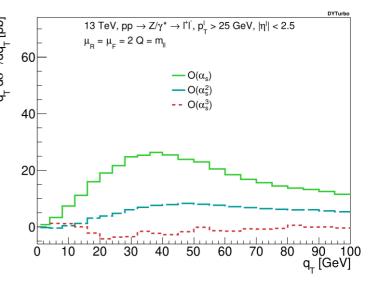
$$\mathcal{W}_{N}^{V}(b, M) = \mathcal{H}_{N}^{V}(\alpha_{S}) \times \exp{\{\mathcal{G}(\alpha_{S}, L)_{N}\}}, L = \log(M^{2}b^{2})$$

Sensitivity to α_s

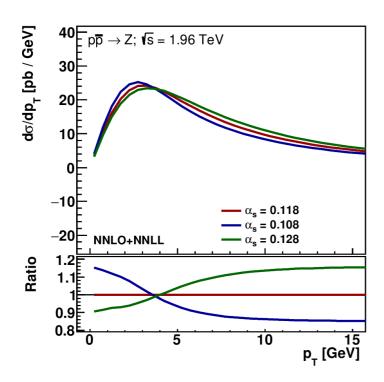
perturbative

Sudakov form factor

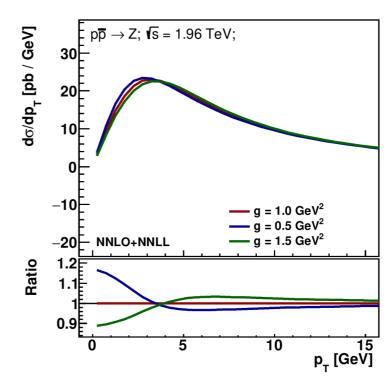
- N3LL accuracy in the Sudakov, N3LO accuracy in the hard coefficient H
- NNLO accuracy in the matching to fixed order at large p_T \rightarrow missing $O(\alpha_s^3)$ terms have permille or subpermille effects in the region $p_T < 30$ GeV
- Consistent 4-loop running of α_s in all parts of the calculation
- PDFs evaluated at the hard scale and evolved with FFN 5F
- Non-perturbative effects modelled with a Gaussian Sudakov form factor governed by a parameter g



Sensitivity to $\alpha_s(m_Z)$



- The sensitivity of the Z-boson p_T distribution to $\alpha_s(m_Z)$ mainly comes from the position of the Sudakov peak
- Typical recoil scale:<p_T> ~ 10 GeV



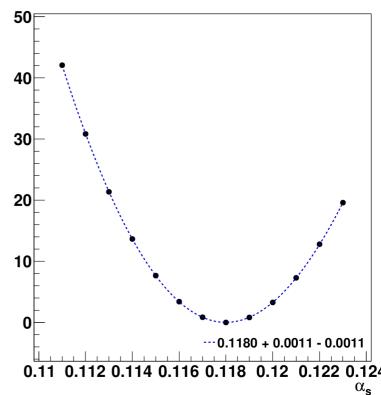
- The sensitivity of the Z-boson p_T distribution to the non-perturbative parameter g also comes from the position of the Sudakov peak
- The scale of the non-perturbative smearing is given by the primordial $< k_T > :$ $g \sim 0.6 \text{ GeV}^2 \rightarrow < k_T > \sim 1.5 \text{ GeV}$
- \rightarrow Possible to disentangle α_s , and g, thanks to their different scale

Methodology for the $\alpha_s(m_z)$ determination

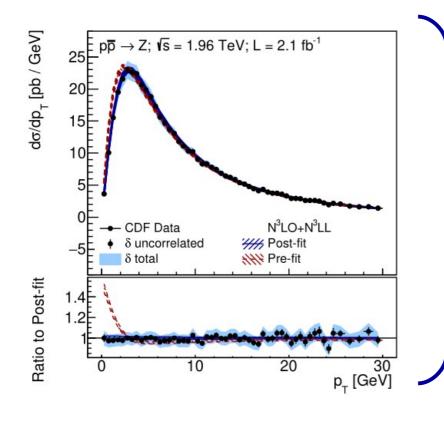
- DYTurbo interfaced to xFitter
- Evaluate $\chi^2(\alpha_s)$ with α_s variations as provided in LHAPDF
- Include experimental ($\beta_{j,exp}$) and PDF ($\beta_{k,th}$) uncertainties in the χ^2

$$\chi^{2}(\beta_{\exp}, \beta_{\operatorname{th}}) = \sum_{\substack{N_{\operatorname{data}} \\ i=1}} \frac{\left(\sigma_{i}^{\exp} + \sum_{j} \Gamma_{ij}^{\exp} \beta_{j, \exp} - \sigma_{i}^{\operatorname{th}} - \sum_{k} \Gamma_{ik}^{\operatorname{th}} \beta_{k, \operatorname{th}}\right)^{2}}{\Delta_{i}^{2}} + \sum_{j} \beta_{j, \exp}^{2} + \sum_{k} \beta_{k, \operatorname{th}}^{2}$$

- At each value of $\alpha_s(m_Z)$ the $\beta_{k,th}$ terms explore the PDF space to find the best fit to the Z p_T data \rightarrow equivalent to including the new dataset in the PDF without refitting, using profiling/reweighting Eur.Phys.J.C 75 (2015) 9, 458
- The non-perturbative form factor is added as unconstrained nuisance parameter (β = 0) i.e. left free in the fit
- Fit the region of Z p_T < 30 GeV</p>



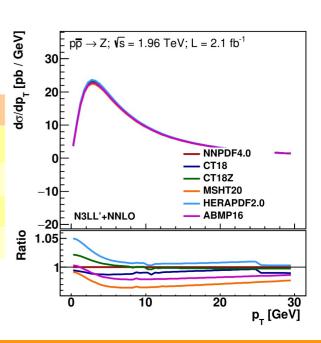
Fit results



• Simultaneous fit of $\alpha_s(m_z)$ and g

$$\alpha_s$$
 = 0.1187
±0.0007 (exp. stat)
±0.0002 (exp. syst)
±0.0004 (PDF)
 g = 0.66 ± 0.05 (GeV²)

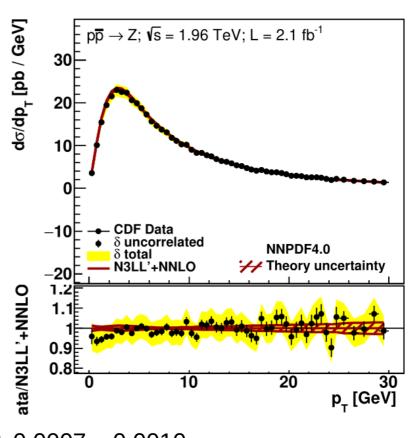
	NNPDF4.0	CT18	CT18Z	MSHT20	HERAPDF2.0	ABMP16
$\alpha_s(m_Z)$	0.1187	0.1186	0.1192	0.1178	0.1185	0.1178
PDF unc.	0.0004	0.0006	0.0005	0.0004	0.0004	0.0002
g (GeV ²)	0.66	0.69	0.69	0.72	0.74	0.72
χ^2 /dof	41/55	40/55	40/55	40/55	40/55	41/55



QCD scale variations

- Predictions depend on three QCD scales: renormalisation, factorisation, and resummation
- Uncertainty from the envelope of all possible combinations of $m_{\parallel}/2 < \mu_{R}, \ \mu_{F}, \ \mu_{RES} < 2m_{\parallel}$ with $0.5 < \mu_{R}/\mu_{F}, \ \mu_{R}/\mu_{RES}, \ \mu_{F}/\mu_{RES} < 2$

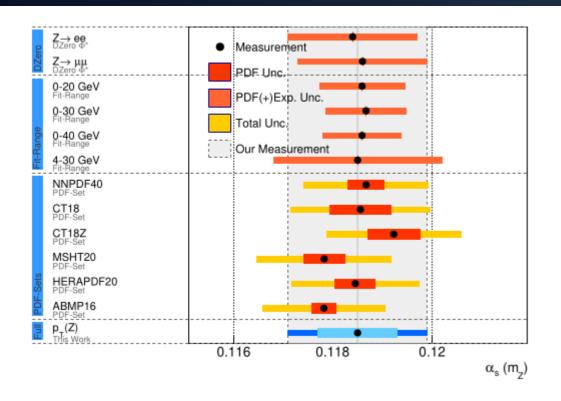
μ_{R}	μϝ	μ_{RES}	$\alpha_{s}(m_{z})$	g(GeV²)	χ^2
1	1	1	0.1187	0.66	41.2
1	1	2	0.1178	0.81	39.1
1	1	0.5	0.1193	0.68	41.3
1	2	1	0.1189	0.66	40.2
1	2	2	0.1178	0.81	39.5
1	0.5	1	0.1187	0.66	41.4
1	0.5	0.5	0.1193	0.69	41.5
2	1	1	0.1190	0.67	41.3
2	1	2	0.1188	0.68	40.8
2	2	1	0.1189	0.67	41.1
2	2	2	0.1188	0.67	40.5
0.5	1	1	0.1177	0.80	40.3
0.5	1	0.5	0.1187	0.64	40.4
0.5	0.5	1	0.1177	0.79	40.0
0.5	0.5	0.5	0.1187	0.64	40.6

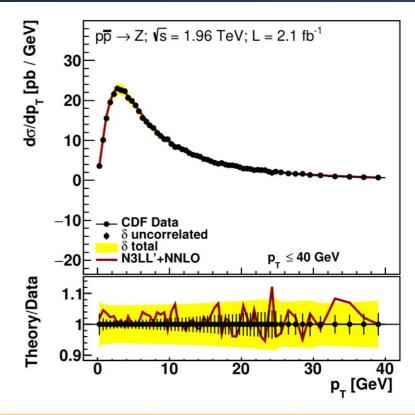


$$\delta \alpha_s$$
 = + 0.0007 - 0.0010

$$\delta g = + 0.15 - 0.02 (GeV^2)$$

Fit range stability





- Remarkable stability with respect to variations of the fit range
- Confirms negligible effect of missing $O(\alpha_s^3)$ corrections in the matching to fixed order, and goodness of the NP model

	p _⊤ < 20 GeV	p _⊤ < 30 GeV	p _⊤ < 40 GeV
α_{s} (m _z)	0.1186	0.1187	0.1186
fit unc.	0.0009	0.0008	0.0008
χ^2 /dof	27/38	41/53	47/58

	$0 < p_T < 30 \text{ GeV}$	2 < p _T < 30 GeV	4 < p _T < 30 GeV
$\alpha_s(m_z)$	0.1187	0.1187	0.1185
fit unc.	0.0008	0.0008	0.0015
χ^2 /dof	41/53	41/49	38/45

Result

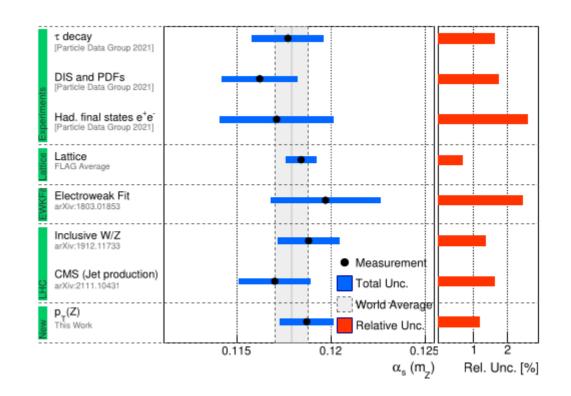
$$\alpha_s$$
 = 0.1185 +0.0014 -0.0015

Measurement in agreement with the world average

- Uncertainty comparable to other determinations
- 1.2% rel. unc.: best collider measurement, second after lattice QCD average
- First N3LO $\alpha_s(m_z)$ at hadron colliders

Breakdown of uncertainties

	$\delta\alpha_s(m_Z,+)$	$\delta \alpha_s(m_Z,-)$
Exp. unc.	+0.0007	-0.0007
PDF unc.	+0.0008	-0.0008
Scale var.	+0.0007	-0.0010
Theory unc.	+0.0007	-0.0004



Summary

- DYTurbo interface is working, and was tested to determine α_s from Tevatron Z $p_{\scriptscriptstyle T}$
- Plan to add a few additional yaml settings
- Not yet tested the possibility to explicitly fit non perturbative parameters, but the functionality should be there (profiling was tested)
- Currently using the BLNY parametrisation, but in principle it should be possible to use arbitrary TMD functions in b space, controlled by xFitter
- Cross sections as functions of p_T ,m,y without cuts on the leptons can be calculated relatively fast (~1 min). Fiducial cross sections are slower, and need a V+jet applgrid. With a sufficiently large number of cores it should be possible to test actual fits on a small number of datasets
- Lepton p_T and lepton η are possible, but currently rather slow, would need to optimise the phase space generation to make them fast

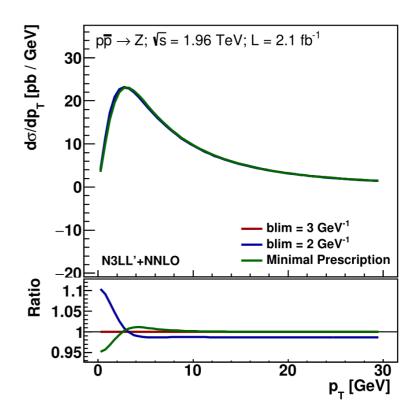
BACKUP

Theory uncertainties

• Alternative fits with blim = 2 and with the minimal prescription:

$$\delta\alpha_s$$
 = +0.0006 - 0.0004 δg = +0.21 -0.13

• Alternative fit with VFN PDF evolution: $\delta\alpha_s = -0.0002$



QED ISR correction

- QED ISR estimated with Pythia 8, and applied as a multiplicative correction
- Correction to the Z-boson p_T at the level of 1%
- Effect on $\alpha_s(m_z)$: $\Delta \alpha_s = -0.0006$
- Comparable to corrections obtained with QED qt-resummation

