Reconstruire le climat et l'environnement du passé

Plan de l'intervention

- Les échelles de temps considérées
- Traceurs climatiques dans différentes archives
 - La reconstruction du niveau des mers dans les archives sédimentaires
 - La reconstruction de température dans les archives sédimentaires
 - La reconstruction de température dans les carottes de glace
 - La reconstruction de concentration en gaz à effet de serre dans les carottes de glace
- Reconstructions climatiques

Plan de l'intervention

• Les échelles de temps considérées

- Traceurs climatiques dans différentes archives
 - La reconstruction du niveau des mers dans les archives sédimentaires
 - La reconstruction de température dans les archives sédimentaires
 - La reconstruction de température dans les carottes de glace
 - La reconstruction de concentration en gaz à effet de serre dans les carottes de glace
- Reconstructions climatiques

Paléotempératures sur Terre

Le Quaternaire – la géographie actuelle et les calottes polaires

Les cycles glaciaires - interglaciaires

Les cycles glaciaires - interglaciaires

Present

Last Glacial Maximum 20.000 ans BP

Les cycles glaciaires – interglaciaires, le moteur de l'insolation

Les cycles glaciaires – interglaciaires, le moteur de l'insolation

La **théorie de Milankovitch:** une période glaciaire est enclenchée par un minimum de l'ensoleillement à 65°N en été (21 juin), qui permet à la neige de persister toute l'année et donc de construire des calottes glaciaires de l'hémisphère Nord. Par exemple, à la dernière entrée en glaciation, il y a 116 ± 1 mille ans, l'ensoleillement en

Juin à 65°N etait environ 40 W m⁻² moins élevé qu'aujourd'hui.

Plan de l'intervention

- Les échelles de temps considérées
- Traceurs climatiques dans différentes archives
 - La reconstruction du niveau des mers dans les archives sédimentaires
 - La reconstruction de température dans les archives sédimentaires
 - La reconstruction de température dans les carottes de glace
 - La reconstruction de concentration en gaz à effet de serre dans les carottes de glace
- Reconstructions climatiques

Les sédiments marins

Les sédiments marins

$$\delta^{18}O = \left(\frac{\left(\frac{^{18}O}{^{16}O}\right)_{\acute{e}chantillon}}{\left(\frac{^{18}O}{^{16}O}\right)_{standard}} - 1\right) \times 1000$$

From W.F. Ruddiman, 2001

Comptage de faune polaire (neogloboquadrina pachyderma sinistra)

Les isotopes de l'oxygène dans les carbonates

Ravelo & Hillaire marcel, 2007

 $T^{\circ}C = 16,5 - 4,3 \ (\delta^{18}O_{calcite} - \delta^{18}O_{eau}) + 0,14 \ (\delta^{18}O_{calcite} - \delta^{18}O_{eau})^2$

Les alcénones

La répartition Mg/Ca dans le réseau cristallin

Une nouvelle méthode – les « clumped » isotopes

D'après Eiler, 2007

Une nouvelle méthode – les « clumped » isotopes

Mangenot, 2018

Les analyses polliniques dans les sédiments marins

Pollen et types de végétation

Analyses polliniques (Europe)

Forêt méditerranéenne

Pin

Chêne vert

Olivier

Végétation semi-désertique

Sauge

diacées

Petits arbustes Herbacées

Analyses pollinique (Europe)

Steppe centro-européenne

Forêt tempérée

Chêne Charme Hêtre

Chardon

Les analyses polliniques dans les sédiments marins

Les analyses polliniques dans les sédiments marins

Plan de l'intervention

- Les échelles de temps considérées
- Traceurs climatiques dans différentes archives
 - La reconstruction du niveau des mers dans les archives sédimentaires
 - La reconstruction de température dans les archives sédimentaires
 - <u>La reconstruction de température dans les carottes de glace</u>
 - La reconstruction de concentration en gaz à effet de serre dans les carottes de glace
- Reconstructions climatiques

Les carottes de glace

Les carottes de glace

Les carottes de glace polaires

Informations climatiques dans la glace

Composition isotopique de l'eau Evolution de la température

Espèces chimiques Impuretés transportées par l'atmosphère (poussière, aérosols, pollution, ...)

Air piégé dans la glace

 Composition de l'atmosphère (gaz à effet de serre)

Carottes de glace polaires-Isotopes de l'eau et température

Oxygène: ¹⁶O (99,63 %), ¹⁷O (0,0375 %), ¹⁸O (0,1995 %)

> **Hydrogène:** ¹H (99,9852 %), ²H (D) (0,0148 %)

> > Dans l'eau de mer :

 $^{18}O/^{16}O = 0.2$ % et D/H = 0.015 %

Formes principales de la molécule d'eau:

 $H_2^{16}O, H_2^{18}O, HD^{16}O, H_2^{17}O$

$$\delta^{18} \mathbf{O} (\%) = \left(\frac{\left[\frac{{}^{18} \mathbf{O}}{{}^{16} \mathbf{O}} \right]_{\text{ech}}}{\left[\frac{{}^{18} \mathbf{O}}{{}^{16} \mathbf{O}} \right]_{\text{SMOW}}} - 1 \right) * 1000$$

Carottes de glace polaires- Isotopes de l'eau et température

Casado, 2017

Carottes de glace polaires - Isotopes de l'eau et température

Carottes de glace polaires-Isotopes de l'eau et température

Thermomètre isotopique

Carottes de glace polaires - Isotopes de l'eau et température

temps

Carottes de glace polaires-Isotopes de l'eau et température

Carottes de glace polaires- Isotopes de l'eau et température

Modèles de climat avec isotopes

Carottes de glace polaires – mesures de temperature dans le trou de forage

Jusqu'à un facteur 2 de différence entre les reconstructions de température avec les isotopes de l'eau et la mesure de la température dans le trou de forage.

Carottes de glace polaires - Isotopes de l'eau et température

Difficulté de déterminer la pente isotopes – température

Grande variabilité en fonction des carottes et des échelles de temps.

Plan de l'intervention

- Les échelles de temps considérées
- Traceurs climatiques dans différentes archives
 - La reconstruction du niveau des mers dans les archives sédimentaires
 - La reconstruction de température dans les archives sédimentaires
 - <u>La reconstruction de température dans les carottes de glace</u>
 - La reconstruction de concentration en gaz à effet de serre dans les carottes de glace
- Reconstructions climatiques

Lien entre température et gaz à effet de serre à l'échelle des cycles glaciaires - interglaciaires

Incertitude sur la relation de phase entre CO₂ et température

Modèles de densification de la neige et du névé

Modèles de densification de la neige et du névé

Mesure isotopique de la profondeur de fermeture des pores

Plan de l'intervention

- Les échelles de temps considérées
- Traceurs climatiques dans différentes archives
 - La reconstruction du niveau des mers dans les archives sédimentaires
 - La reconstruction de température dans les archives sédimentaires
 - La reconstruction de température dans les carottes de glace
 - La reconstruction de concentration en gaz à effet de serre dans les carottes de glace
- <u>Reconstructions climatiques</u>

Dernière déglaciation (- 20 000 à - 10 000 ans)

52

Dernière entrée en glaciation

La variabilité millénaire – système climatique instable

59

Signal dans les sédiments

- -signal détritique pauvre en micro-organismes
- -7000/8000 ans
- -Refroidissements des eaux de surfaces
- >>Destabilisation de la calotte Laurentide

// Evènements de Heinrich

dans les sédiments d'Atlantique Nord

250 μm sédiment glaciaire de l'Atlantique Nord

Les comparaisons aux modèles climatiques

La dernière déglaciation

Kaufmann et al., 2020

Synthèse de données et lien avec la modélisation

Citer Osman 2021, *Nature* volume 599, pages 239–244 (2021)