

Modélisation des expériences LWFA au LOA avec des techniques de simulation modernes.

Igor A Andriyash

Laboratoire d'Optique Appliquée

ENSTA-Ecole Polytechnique-CNRS

Palaiseau, France

Unique source features

- compact (table-top)
- ultra-fast $\sim fs$
- multi-kA current
- jitterless synchronization

High repetition rate systems (mJ@kHz)

- high compression (few-cycles)
- sharp focusing ($w_0 \sim 1 \,\mu m$)
- low e⁻ energy (few MeVs)
- high average flux
- stable operation
- e⁻ diffraction, Compton X-rays

High power lasers (TW-PW)

- laser guiding
- multi-GeV electrons
- controllable injection
- low-divergence $\lesssim 1 \text{ mrad}$
- monoenergetic
- future XFELs and colliders

Unique source features

- compact (table-top)
- ultra-fast $\sim fs$
- multi-kA current
- jitterless synchronization

High repetition rate systems (mJ@kHz)

- high compression (few-cycles)
- sharp focusing ($w_0 \sim 1 \,\mu m$)
- low e⁻ energy (few MeVs)
- high average flux
- stable operation
- e⁻ diffraction, Compton X-rays

High power lasers (TW-PW)

- laser guiding
- multi-GeV electrons
- controllable injection
- low-divergence $\lesssim 1 \text{ mrad}$
- monoenergetic
- future XFELs and colliders

Relativistic laser plasma at LOA

Salle corail Sources XUV, applications et métrologie

High rep. rate system Salle Noire 2.0:

- 3mJ@[4 fs-1 ps, 760 nm, 1 kHz]
- Applications
- Laser plasma acceleration (e, p)
- Ultra-fast X-rays (HHG, Compton)

Source d'électrons et EUV haute cadence rapide dans les solides Salle violette Filamentation & applications

Salle noire 3.0 High power system Salle Jaune: ints

- 2×60 TW@[30 fs, 800 nm, 0.1 − 1 Hz] LOA/SourceLab
- Laser plasma acceleration (e)
 Interaction a ultra haute intensité
- Ultra-fast X-rays (betatron, Compton)
- Ultra-fast soft X-rays (lasing)
- Applications

TIME-SCALES IN LWFA

- gas flow: (super)sonic, transient/steady-state, turbulent, viscosity
- plasma hydro-dynamics and heat transport: channel/shock formation
- laser spot formation, measurements interpretation
- LWFA: e.m. field, plasma response, propagation

OPEN-SOURCE/ON-REQUEST SOLUTIONS

PIC codes

- WARPX^{multi-}/solv, port
- Smilei^{multi-D/solv}
- PIConGPU^{multi-}/solv, port
- EPOCH multi-m/solv
- FBPIC^{RZ, PSATD, GPU}
- ChimeraCL^{RZ, PSATD, GPU}
- HiPACE++^{QSA}
- QuickPIC^{QSA}
- WAND-PIC^{QSA}
- Architect^{RZ, Fluid}
- PICLS
- Piccante/ALaDyn
- VPIC
- iPic3D

Hydrodynamics

- OpenFOAM
- COOLFluiD
- Plasma MHD
 - FLASH
 - CASTRO
 - FRONT3D

Bunch Transport

- ELEGANT^{ALL}
- ASTRA^{RK,SC,SCR}
- OCELOT^{MTRX,SC,SCR}
- AT^{MTRX}
- Beta^{MTRX}
- Synergia^{PIC}

SR

- SynchRad^{SR,GPU}
- AxiProp^{Prop,GPU}
- SRW^{SR,Prop}
- XRT^{SR,Prop,GPU}
- CHIMERA^{SR}
- Shadow3 (OASYS)*
- OPC^{Prop}

FEL

- GENESIS^{3D,TD}
- PUFFIN^{3D,TD, unav}
- CHIMERA<sup>3D,PSATD,TD, unav
 </sup>
- FEL Booklet (PARSIFEL)

Challenges: typically $10^5 - 10^6$ steps, numerical artefacts

• Quasi-cylindrical: $\times 2 N_{\perp}/N_m$

- Quasi-cylindrical: $\times 2 N_{\perp}/N_m$
- Laser field envelope: $\times \sqrt{n_c/n_{pe}}$

- Quasi-cylindrical: $\times 2 N_{\perp}/N_m$
- Laser field envelope: $\times \sqrt{n_c/n_{pe}}$
- Quasi-static: $\times \sqrt{2 \gamma_b n_c/n_{pe}}$

- Quasi-cylindrical: $\times 2 N_{\perp}/N_m$
- Laser field envelope: $\times \sqrt{n_c/n_{pe}}$
- Quasi-static: $\times \sqrt{2 \gamma_b n_c/n_{pe}}$
- Lorentz boosted-frame: ×n_c/n_{pe}

Challenges: typically $10^5 - 10^6$ steps, numerical artefacts

- Quasi-cylindrical: $\times 2 N_{\perp}/N_m$
- Laser field envelope: $\times \sqrt{n_c/n_{pe}}$
- Quasi-static: $\times \sqrt{2 \gamma_b n_c/n_{pe}}$
- Lorentz boosted-frame: ×n_c/n_{pe}

Numerical dispersion: PSATD, NDFX

- Quasi-cylindrical: $\times 2 N_{\perp}/N_m$
- Laser field envelope: $\times \sqrt{n_c/n_{pe}}$
- Quasi-static: $\times \sqrt{2 \gamma_b n_c/n_{pe}}$
- Lorentz boosted-frame: ×n_c/n_{pe}

- Numerical dispersion: PSATD, NDFX
- Numerical Cherenkov: centred force

- Quasi-cylindrical: $\times 2 N_{\perp}/N_m$
- Laser field envelope: $\times \sqrt{n_c/n_{pe}}$
- Quasi-static: $\times \sqrt{2 \gamma_b n_c/n_{pe}}$
- Lorentz boosted-frame: ×n_c/n_{pe}

- Numerical dispersion: PSATD, NDFX
- Numerical Cherenkov: centred force
- Streaming plasma instability: Galilean frame

- 2D/3D, Quasi-cylindrical
- FDTD: Yee, NDFX, DS, CKC
- PSATD: FFT2D/3D, FFT+Hankel
- current deposition: direct, Esirkepov, ZigZag

- pushers: Boris, Vay, Higuera-Cary
- QSA: predic-corr, explicit
- Envelope: 3D/RZ

GUIDED LWFA AT LOA: EXPERIMENT

Laser, 30fs, 810 nm

- P2: $f_0 = 200 \text{ mm}$, axiparabola $\delta = 30 \text{ mm}$, 1.46 mJ
- P1: $f_0 = 1.5$ m, 1.7 J (60% in main peak), + 2ns

Target

- Slit nozzle 15mm 40 bars $\rightarrow n_{pe} = 1.4 \times 10^{19} \text{ cm}^{-3}$
- Injection: ionization $(H_2+1\%\dot{N_2})$, shock (H_2)
- motorised blade to produce shock

GUIDED LWFA AT LOA: EXPERIMENT

Laser, 30fs, 810 nm

- P2: $f_0 = 200 \text{ mm}$, axiparabola $\delta = 30 \text{ mm}$, 1.46 mJ
- P1: $f_0 = 1.5$ m, 1.7 J (60% in main peak), + 2ns

Target

- Slit nozzle 15mm 40 bars $\rightarrow n_{pe} = 1.4 \times 10^{19} \text{ cm}^{-3}$
- Injection: ionization (H₂+1%N₂), shock (H₂)
- motorised blade to produce shock

GUIDED LWFA AT LOA: MODELING

Channel formation (FRONT3D)

GUIDED LWFA AT LOA: MODELING

• Lorentz-boosted PIC (FBPIC)

GUIDED LWFA AT LOA: MODELING

Questions