

Turbulence et circulation méridionale océanique

Basile Gallet,

SPEC, Université Paris-Saclay, CEA Saclay.

Julie Meunier, Gabriel Hadjerci, Benjamin Miquel, Sébastien Aumaître, R. Ferrari, K. Julien

basile.gallet@cea.fr

Meridional overturning circulation

Ocean heat uptake? Sink of atmospheric CO2? Response to global warming?

Ocean heat uptake? Sink of atmospheric CO2? Response to global warming?

Deeper: Meridional overturning circulation

 $1\,Sv = 10^6\,m^3/s$ ECCOv4 data, processing by M. Rogers, MIT.

Deeper: Meridional overturning circulation

 $1\,\mathrm{Sv} = 10^6\,\mathrm{m}^3/\mathrm{s}$ ECCOv4 data, processing by M. Rogers, MIT.

Deeper: Meridional overturning circulation

Turbulent ocean transport

Strong baroclinic turbulence in the Southern Ocean

Turbulent ocean transport

Strong baroclinic turbulence in the Southern Ocean

Turbulent transport and mixing

Turbulence is unresolved in climate models (ocean part)

- Parameterized through ad hoc coefficients, tuned to produce the expected behavior.
- Not always fully physically motivated.

Order-one phenomenon, that we need to understand physically to make accurate predictions.

Turbulent transport and mixing

Turbulence is unresolved in climate models (ocean part)

- Parameterized through ad hoc coefficients, tuned to produce the expected behavior.
- Not always fully physically motivated.

Order-one phenomenon, that we need to understand physically to make accurate predictions.

Magnitude of the buoyancy flux

- Overall buoyancy transport?
- Dependence on stratification, vertical shear, bottom drag, beta, topography?

Three-dimensional structure of buoyancy transport

- Direction of the buoyancy flux vector?
- Vertical structure of the turbulent diffusivity?

I. Baroclinic turbulence

Competition between Ekman pumping and baroclinic turbulence sets the slope of the density surfaces, and thus the stratification of ocean basins.

Need for a physically based parameterization of baroclinic turbulence.

Diffusive parameterization of baroclinic turbulence

Scale separation

'Turbulent' diffusion

Magnitude and depth-dependence of the diffusivity?

Two-layer model [Phillips 1954]:

[Gallet & Ferrari, PNAS 2020]

Two-layer model [Phillips 1954]:

[Gallet & Ferrari, PNAS 2020]

Two-layer model [Phillips 1954]:

[Gallet & Ferrari, PNAS 2020]

Fully 3D model:

Can we gradually include all the relevant physical ingredients?

II. Wave-induced mixing

Origin of the overturning circulation

Turbulent diffusion in the large ocean basin allows for a circulation that crosses density surfaces.

Origin of the overturning circulation

Turbulent diffusion in the large ocean basin allows for a circulation that crosses density surfaces.

Magnitude and vertical structure of the diffusivity?

Origin of the overturning circulation

Turbulent diffusion in the large ocean basin allows for a circulation that crosses density surfaces.

Magnitude and vertical structure of the diffusivity?

Wave-induced turbulent mixing

Generation of internal gravity waves through interaction of flows with bottom topography

Radiated power ? Spectrum of emitted waves ?

Nonlinear wave interactions away from the topography.

A wave turbulence regime ? Breaking of steep internal waves ? Interaction between waves and slow mean flow?

Wave-induced turbulent mixing

10

5

10

Wave radiation by topography:

[Nikurashin et al. Nat. Geosciences]

Internal wave attractor: $(u^2 + w^2)^{1/2} \text{ [cm/s]}$

0.5

40

[Brouzet et al. EPL]

35

Inertial wave turbulence:

20

 $x \, [\mathrm{cm}]$

15

25

30

[Brunet et al. PRL, Monsalve et al. PRL]

III. Convective turbulence

Role for the strength of the Atlantic Meridional Overturning Circulation?

III. Convective turbulence

Role for the strength of the Atlantic Meridional Overturning Circulation?

Convection subject to rotation

- Scaling arguments for temperature drop, velocity scale, vertical scale, in terms heat flux and rotation rate.
- Viscosity and diffusivities play no role according to oceanographers.
- However, standard numerical and experimental setups show strong dependence on diffusivities (Rayleigh-Bénard).

Introducing a new idealized setup

Leads to **diffusivity-free scaling-laws:** first observation of the 'geostrophic turbulence' regime of rotating convection. [Julien & Knobloch]

Conclusions

• Turbulence is everywhere in the ocean, under various forms.

- Strong control of turbulence on large-scale ocean structure: flow and stratification.
- Studied by physicists using idealized setups of increasing complexity

