

GNE

A. Peugeot

F. Portier

I. Mukharsky

C. Altimiras

Quantronique

D. Vion

D. Estève

C. Rolland Z. Iftikhar P. Roche H. Le Sueur P. Joyez

IQST Ulm university (theory)

C. Padurariu

B. Kubala

J. Ankerhold

Outline

- Introduction, photoemission
- Experimental setup
- Photoemission in cQED
- Fano factor
- Conclusion

Normal metal comparison (T=0)

Introduction

Josephson junction with bias voltage $V_{\rm bias}$

Introduction

Josephson junction with bias voltage V_{bias} Resonator in circuit

> Josephson Hamiltonian $\widehat{H}_J = -E_J \cos \widehat{\phi}_J$

Phase $\hat{\phi}_{\rm V} = \omega_J t = \hat{\phi}_{\rm J} + \hat{\phi}_R$ $\hat{\phi}_{\rm R} = \sqrt{\alpha} (\hat{a}^{\dagger} + \hat{a})$

Introduction

Coupling Josephson junction & microwave resonator

$$\widehat{H} = h\nu_R \widehat{a}^{\dagger} \widehat{a} - E_J \cos\left(2\pi\nu_J t - \sqrt{\alpha}(\widehat{a}^{\dagger} + \widehat{a})\right)$$

Resonator

Josephson junction

Introduction

Coupling Josephson junction & microwave resonator

$$\widehat{H} = h\nu_R \widehat{a}^{\dagger} \widehat{a} - E_J \cos\left(2\pi\nu_J t - \sqrt{\alpha}(\widehat{a}^{\dagger} + \widehat{a})\right)$$

Resonator

Josephson junction

Introduction

Coupling Josephson junction & microwave resonator $\widehat{H} = h\nu_R \widehat{a}^{\dagger} \widehat{a} - E_J \cos\left(2\pi\nu_J t - \sqrt{\alpha}(\widehat{a}^{\dagger} + \widehat{a})\right)$ Josephson frequency: 2eV $v_J = -----h$ $\Gamma_{rad} \propto lpha = rac{4\pi Z_R}{R_k}$ $R_k = \frac{h}{e^2}$

 α can be tuned by properly designing the circuit

Introduction

Visual representation

(not to scale)

Introduction

- DC polarization at voltage V
- Recording Power spectrum density (PSD) in finite frequency band (5-7 GHz)
- Resonator centered at 6,1 GHz

Main emission line follows: 2eV = hv

Introduction

Emission occurs at $v_J = \frac{2eV}{kh}$ With a rate $\Gamma_{rad} \simeq \alpha^k$

Introduction

Emission occurs at 2eV ν_I = kh With a rate $\Gamma_{rad} \simeq \alpha^k$ $\widehat{H} = h\nu_R \widehat{a}^{\dagger} \widehat{a} - E_I \cos(\overline{\phi}_I)$ $\widehat{\phi}_J = \widehat{\phi}_V - \widehat{\phi}_R$ Voltage source: $\hat{\phi}_V = v_I t$ Resonator: $\hat{\phi}_R = \sqrt{\alpha} (\hat{a}^{\dagger} + \hat{a})$

Introduction

Emission occurs at 2eV v_I With a rate $\Gamma_{rad} \simeq \alpha^k$ $\widehat{H} = h \nu_R \widehat{a}^{\dagger} \widehat{a} - E_I \cos(\widehat{\phi}_I)$ $\widehat{\phi}_J = \widehat{\phi}_V - \widehat{\phi}_R$ Voltage source: $\hat{\phi}_V = v_I t$ Resonator: $\hat{\phi}_R = \sqrt{\alpha} (\hat{a}^{\dagger} + \hat{a})$

Large α : no perturbative treatment

R

Introduction

$$\widehat{H}_{J} \approx e^{i\widehat{\phi}} + e^{-i\widehat{\phi}}, \quad \widehat{\phi}_{R} = \sqrt{\alpha}(\widehat{a}^{\dagger} + \widehat{a})$$

otating wave approximation: $e^{\pm i\widehat{\phi}} \rightarrow \widehat{a}^{(\dagger)^{k}}$

Introduction

$$\widehat{H}_J \approx e^{i\widehat{\phi}} + e^{-i\widehat{\phi}}, \qquad \widehat{\phi}_R = \sqrt{\alpha} (\widehat{a}^{\dagger} + \widehat{a})$$

Rotating wave approximation: $e^{\pm i\widehat{\phi}} \rightarrow \widehat{a}^{(\dagger)^k}$

$$\widehat{H}_{k} = -\frac{E_{J}e^{-\frac{\alpha}{2}}}{2} \alpha^{\frac{k}{2}} \Big[e^{-i\delta t} \widehat{B}_{k} (i\widehat{a}^{\dagger})^{k} + h.c. \Big]$$
(\widehat{B}_{k} : diagonal in Fock basis involving generalized Laguerre polynomials)

Squeezing Hamiltonian

Nb Spiral inductor connected to dc-biased Al/AlOx/Al SQUID $\alpha \simeq 1$

(NB: same sample but 3 different experimental runs in 2 different fridges)

C. Rolland et al. Phys. Rev. Lett. **122**, 186804 (2019) G. Ménard et al. Phys. Rev. X **12**, 021006 (2022)

The photons live in the resonator but cannot be directly measured.

Introduction

We only measure the leakage from the resonator $\hat{a}_{out} = \kappa \hat{a}_{in}$

Introduction

Measurement circuit:

- Polarization (V_b)
- Resonator (ν_R)
- SQUID $\left(\widehat{\phi}_{J}
 ight)$

Introduction

Measurement circuit:

- Polarization (V_b)
- Resonator (v_R)
- SQUID $\left(\widehat{\phi}_{J}
 ight)$
- Magnetic tuning
 - (E_J)

Introduction

Measurement circuit:

- Polarization (V_b)
- Resonator (v_R)
- SQUID $\left(\widehat{\phi}_{J}
 ight)$
- Magnetic tuning (E_I)
- Measurement (\hat{a}_{out})

Introduction

Measurement circuit:

- Polarization (V_b)
- Resonator (v_R)
- SQUID $\left(\widehat{\phi}_{J}
 ight)$
- Magnetic tuning (E_I)
- Measurement (\hat{a}_{out})
- Heterodyning
- Signal integration (diode)

Sweeping voltage around resonance.

C. Rolland et al. Phys. Rev. Lett. **122**, 186804 (2019) G. Ménard et al. Phys. Rev. X **12**, 021006 (2022)

Power measurements

Results

Low
$$E_j$$
:
(on resonance $2eV = kh\nu_R$, Purcell
relaxation rate):
 $\gamma_k = \frac{\Gamma_k}{k} = -\left(\frac{E_j}{h\nu_R}\right)^2 \frac{\alpha^k e^{-\alpha}}{kk!} Q\nu_R$

Power measurements

Results

Low E_j : (on resonance $2eV = khv_R$, Purcell relaxation rate): $\gamma_k = \frac{\Gamma_k}{k} = -\left(\frac{E_j}{hv_R}\right)^2 \frac{\alpha^k e^{-\alpha}}{kk!} Qv_R$

Strong E_J : Feedback of the resonator on emission

Perfect agreement between theory and experiment, taking into account full Hamiltonian.

Correlators

Fano factor

$$F_{k} = 1 + 2\Gamma_{k} \int_{0}^{\infty} [g^{(2)}(\tau) - 1] d\tau$$

Measures field statistics, variance of photons divided by number of photons emitted during time $t > \Gamma_k^{-1}$.

Correlators

Fano factor

$$F_{k} = 1 + 2\Gamma_{k} \int_{0}^{\infty} \left[g^{(2)}(\tau) - 1\right] d\tau$$

Measures field statistics, variance of photons divided by number of photons emitted during time $t > \Gamma_k^{-1}$.

Second order correlator:

$$g^{(2)}(\tau) = \frac{\left\langle \hat{a}_{\text{out}}^{\dagger}(0)\hat{a}_{\text{out}}^{\dagger}(\tau)\hat{a}_{\text{out}}(\tau)\hat{a}_{\text{out}}(0)\right\rangle}{\left\langle \hat{a}_{\text{out}}^{\dagger}\hat{a}_{\text{out}}\right\rangle^{2}}$$

 \rightarrow probability for two photons separated by τ to leak in the same electro-magnetic mode

 $F_k = k$ at low E_J up to k = 4(limited by noise on $g^{(2)}(\tau)$)

Correlators

Averaging various $g^{(2)}(\tau)$ around the central emission frequency.

Noise → dampening of Fano factor behavior

Conclusion

- Observation of photonic emission up to k = 6 (in power & frequency measurements)
- Measurement of Fano factor = k for low E_I
- Complete theoretical understanding of behavior of Fano factor
- Emission of photon multiplets in high impedance electromagnetic environment

Thank your for your attention

Introduction

Simple two-level system $\widehat{H} = \widehat{H}_0 + \widehat{V}_{em} = E_1 |1\rangle \langle 1| + E_0 |0\rangle \langle 0|$

Without coupling, system stays in state $|1\rangle$

Introduction

Simple two-level system with external electromagnetic perturbation $\widehat{H} = \widehat{H}_0 + \widehat{V}_{em} = E_1 |1\rangle \langle 1| + E_0 |0\rangle \langle 0| + \widehat{V}_{em}$

Coupling to the electromagnetic field → Spontaneous emission of photons + electronic relaxation

Introduction

Simple two-level system with external electromagnetic perturbation $\widehat{H} = \widehat{H}_0 + \widehat{V}_{em} = E_1 |1\rangle \langle 1| + E_0 |0\rangle \langle 0| + \widehat{V}_{em}$

Introduction

Simple two-level system with external electromagnetic perturbation $\widehat{H} = \widehat{H}_0 + \widehat{V}_{em} = E_1 |1\rangle \langle 1| + E_0 |0\rangle \langle 0| + \widehat{V}_{em}$

For *n* photons emission: $\Gamma_{rad}^{(k)} \propto \alpha^k$. Rapidly tends to zero with increasing *k*.

GDR Méso

Main emission line follows the relation: 2eV = hv

C. Rolland et al. Phys. Rev. Lett. 122, 186804 (2019)

Fano factors for all k orders

Field hysteresis

Normal metal comparison (T=0)

Introduction

Tunneling can occur over the whole V_{bias} range without control on the energy of the transmitted electron.

Normal metal comparison (T=0)

Tunneling can occur over the whole V_{bias} range without control on the energy of the transmitted electron.

No inelastic process favored compared to elastic ones.

Results

Results

Power measurements

Results

Amplitude of emission depends on temperature, allows for calibration of electronic temperature $\frac{A_S}{A_{AS}} = \frac{n}{n+1}$

n →photon occupation of low frequency mode depend on Bose-Einstein distribution

Fano factor: calculation from $g^{(2)}(\tau)$

Correlators

Antibunching

Correlators

$g^{(2)} < 1$ signals antibunching of photons

k = 1 (previous exp.)

Antibunching

Correlators

 $g^{(2)} < 1$ signals antibunching of photons

Observation of antibunching for

strong E_J at k=2

Fano factor: calculation from $g^{(2)}(au)$

Correlators

Fano factor: calculation from $g^{(2)}(\tau)$

Correlators

Fano factor: calculation from $g^{(2)}(\tau)$

Correlators

Error estimated from long time fluctuations of $g^{(2)}(\tau)$