Unveiling topological hinge states in Bi₄Br₄ with quantum interferences

Jules Lefeuvre – LPS (UP-Saclay) – MESO group

Supervised by R. Deblock, S. Guéron and H. Bouchiat Bi₄Br₄ crystals from M. Kobayashi and T. Sasagawa, *Tokyo Institute of Technology*

Topological insulator :

Insulating bulk, conducting boundaries

First-order Topological Insulators

Second-order Topological Insulators

Topological insulator :

Insulating bulk, conducting boundaries

2nd order topological insulator :

- Recent extension of the classification
- \rightarrow Predicted in Bi₄Br₄

First-order Topological Insulators

Spin-momentum locking :

Opposite directions of propagation have opposite spins

Topological protection (against <u>non-magnetic</u> disorder)

 \rightarrow Ballistic transport

I) Bi₄Br₄ - A truly insulating TI ?

Quasi-1D :

- Strong covalent bonds along one direction
- Weak (Van der Waals) bonds along the other two

Noguchi, R. et al. (2021), Nature Materials, 20(4)

I) Bi₄Br₄ - A truly insulating TI ?

- Large spin-orbit gap (230 meV)
- Evidence of the topological states in ARPES and STM
- Topological states can survive up to room temperature

Quasi-1D :

- Strong covalent bonds along one direction
- Weak (Van der Waals) bonds along the other two

Shumiya, N. et al., 2022, Nat. Mater.

I) Conducting hinges

Edge conduction revealed by our conducting AFM measurements at 300 K

What about its transport properties ?

II) Scaling of the resistance

5 μm - 4 μm - 3 μm - 2 μm - 1 μm

 $R = \frac{\rho L}{S}$

Diffusive conductors

Hints at **ballistic transport**

II) Resistance of ballistic channels

Landauer-Büttiker formula :

$$R = \frac{1}{\mathcal{N}} \times \frac{h}{e^2} \approx \frac{1}{\mathcal{N}} \times 26 \ k\Omega$$

This is a **contact resistance**

II) Edge state configuration

Number of contacted edge states can vary between contact pairs

II) Resistance network

Highly anisotropic transport

Supports the 1D nature of transport along hinge states

II) Hall effect

II) Hall effect

III) Refined model for the contacts

Interdiffusion of Pd inside Bi₄Br₄ creates a small disordered region near the contacts

\rightarrow Quantum interferences at low T

III) Weak Antilocalization

Conductance peak → Weak Antilocalization Indicates strong spin-orbit coupling Small Lφ Reasonable considering interdiffusion hypothesis

III) Weak Antilocalization

III) Universal Conductance Fluctuations

Conductance fluctuations

Confirms the L_{ϕ} extracted from Weak Antilocalization

Strong fluctuations

III) Self-averaging?

III) No self-averaging

 $\sqrt{\langle \delta G^2 \rangle} \propto \left(\frac{L_{\phi}}{L}\right)^{2-\frac{d}{2}}$

Amplitude of the fluctuations

Fluctuations are **much larger** than expected

 \rightarrow No self-averaging

III) Transmission modulated by interferences

T_{R,L}, R_{R,L}: Transmission / reflection coefficient of the left / right disordered region

Small disordered region $(L_{Pd/BiBr} \sim L_{\phi})$ produces fluctuations of the global conductance of **1D hinge states**

$$G_{1\mathrm{D}} = \frac{e^2}{h} \frac{T_L T_R}{1 - R_L R_R}$$
 Depend on B!

Conclusion

- Strongly anisotropic transport suggests the existence of 1D channels
- General lack of length dependence provide good evidence for the **ballisticity** of the 1D hinge states

Conclusion

- Strongly anisotropic transport suggests the existence of 1D channels
- General lack of length dependence provide good evidence for the **ballisticity** of the 1D hinge states

→ Bi₄Br₄ appears as an excellent material for the fundamental study of 1D topological states

Conclusion

- Strongly anisotropic transport suggests the existence of 1D channels
- General lack of length dependence provide good evidence for the **ballisticity** of the 1D hinge states

Aharonov-Bohm oscillations ?

Interplay with superconductivity ?

→ Bi₄Br₄ appears as an excellent material for the fundamental study of 1D topological states

Thank you !

A1) Field anisotropy

Diffusion paths do not explore the thickness of the flake \rightarrow 2D diffusion

Two smaller lobes in different directions...

A1) Field anisotropy

Direction of the lobes = slope of the side contacts

→ Confirms that the disordered region originates from the contacts

EDX measurement of the spots show **Bi** and **Pd** in their composition

Measuring the set of all 2-wire resistances (= the resistance distances) allow to recover the resistance network of the sample

Resistance distance matrix : \mathcal{R}_{ij}

Laplacian matrix :
$$\mathcal{L}_{ij} = rac{-1}{w_{ij}}$$
 if $i
eq j$

1

$$\mathcal{L} = 2\mathcal{R}^{-1} + \frac{2}{\mu^T \mathcal{R} \mu} \mu \mu^T$$

with
$$\mu_i = 2 - \sum_{j=\mathcal{N}(i)} \frac{R_{ij}}{w_{ij}}$$

A4) Dynamical Coulomb Blockade vs. Luttinger Liquid

For LL power law, $k_BT > E_{th}$ \rightarrow Incompatible with LL

 $\alpha = -2\frac{R_{\rm env}}{R_{\rm Q}}$ \rightarrow R_{env} ~ R_Q/6 - R_Q/3 5 µm

4 µm

3 um

 $\alpha = -0.33$

 $\alpha = -0.54$

 $\alpha = -0.63$ 2 µm

 $\alpha = -0.5$ $1 \mu m$

A - A termination

A - B termination

Theory :

Zhou, J.-J. et al. (2015), New Journal of Physics, 17(1).

ARPES:

Noguchi, R. et al. (2021), Nature Materials, 20(4)