

July 5th, 2023 Congrès de la SFP

The Future Circular Colliders (FCC) Feasibility Study and its Physics Potential

Gregorio Bernardi APC Paris, CNRS/IN2P3 gregorio@in2p3.fr

APC Paris, CPPM Marseille, IJCLab Orsay, IPHC Strasbourg, IP2I Lyon, IRFU CEA/Saclay, LAPP Annecy, LLR Palaiseau, LPC Clermont, LPNHE Paris, LPSC Grenoble, L2IT Toulouse

Presentation Layout

- Why do we need a new accelerator after the LHC?
- The FCC Feasibility Study
- The FCC-ee Physics potential
- Next steps

FCC Why do we need a new accelerator after the LHC?

Particle physics appears as a mature branch of fundamental science

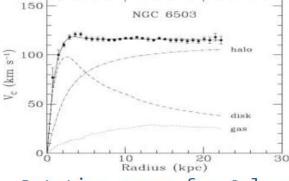
The 'Standard Model' appeared in 1976 after the discoveries of

Neutrino Neutral currents (Z boson exchange) in 1973 and
 Charmed particles (BNL, SLAC) in 1974-76

since then we have been discovering all the particles that have electric charge or QCD charge, or weak isospin (SM couplings), and the Higgs boson, by increasing accelerator energies.

The Standard Model is "complete" and explains all HEP Physics, but...

but.. we cannot explain crucial observations with the SM, for instance:

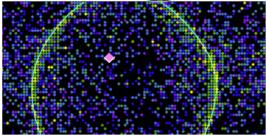

Electron-positron pair production

What is Dark matter ?

CC

Standard Model particles constitute only 5% of the energy in the Universe

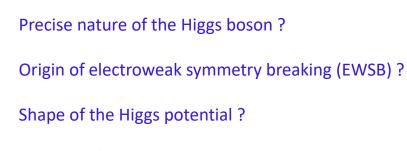
Rotation curve for Galaxy

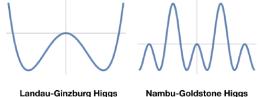

Were is primordial antimatter gone?

What is the origin of neutrino masses?

Not a unique solution in the SM

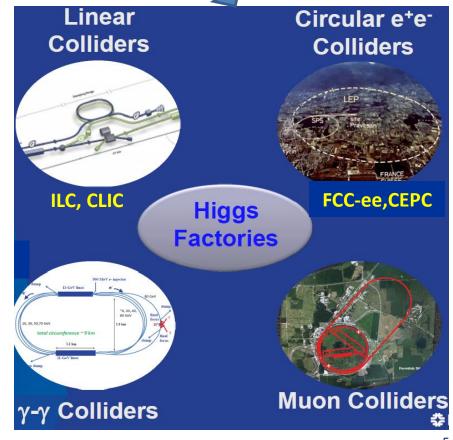
Dirac masses (why so small?) or Majorana (why not Dirac?)


- ➔ heavy right-handed neutrinos?
- «sterile», very small coupling to known particles completely unknown masses (eV to ZeV), hence very difficult to find



Gregorio Bernardi APC - Paris ... but could perhaps explain all: Dark Matter, Baryon Asymmetry, v-masses

FCC ...and the Higgs boson/field still need to be better understood


- → It is a unique object, a scalar particle/field (spin 0), not a matter field, not a boson mediating a gauge interaction, but a field carrying a new type of interaction of the Yukawa type.
- → Many proposals for new accelerators to study it, and to study Beyond Standard Model (BSM) physics
- \rightarrow Easier choice on the machine now that the Higgs boson has been discovered.

Strength of the electroweak phase transition ? What is its role just after the big bang ? Inflation ?

We need to determine precisely the Higgs couplings and the Higgs self-couplings to answer these questions.

FCC How to best study the Higgs / go beyond the Standard Model?

- By measuring deviations from precise predictions (ex: Higgs or Electroweak couplings...)
- By observing New Phenomena (ex: Neutrino Oscillations, CP violation..)
- By direct observation of new particles

But we do not have a natural energy scale to search for !

→ We don't know where to look and what we will find

→ The next facility must have a reach as broad and powerful as possible,

→ more Sensitivity, more Precision, more Energy

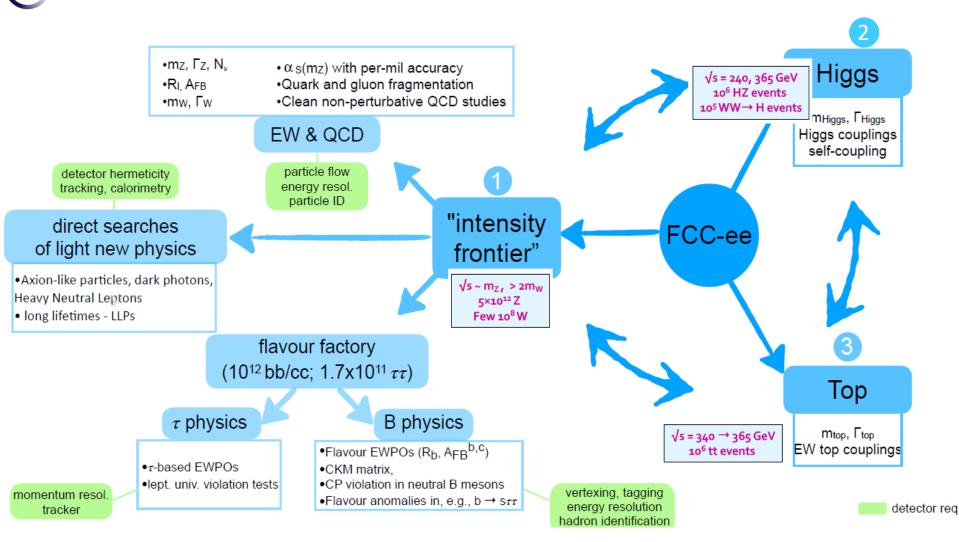
Circular machines, thanks to synergies and complementarities between ee and hh, offers today the most versatile and adapted response to today's physics landscape

FCC Motivation for a circular collider FCC-ee vs. a linear collider

One of the great advantages of the circular (e+ e-) colliders is:

- The possibility of using the same beams for many hours and serving several interaction points with net overall gain both in integrated luminosity and luminosity/MW.

FCC-ee is a machine with a very rich menu of physics possibilities, given its luminosity, and the options to run at many differenter center-of-mass energies


this leads to many detector requirements, which are best satisfied with more than one detector → we are aiming at 4 detectors in 4 interactions points with complementary strengths Example of competing constraints for EM calorimeter: high E precision vs. high granularity vs. high stability vs. geometric accuracy vs. PID

- many measurements will serve as input to future programs in particular FCC-hh
- many are statistically limited
- redundancy provided by 4IPs/detectors is essential for high precision measurements (hidden systematic biases)

The limitation in maximum energy (not as strong for a linear collider) is not a crucial drawback, given the current HEP panorama given by the SM, and the subsequent FCC-hh program which will reach the highest energies

The non availability of beam polarization (an advantage of linear colliders) is also not a crucial drawback since FCC-ee will run at different energies and will accumulate much more statistics.

at Circular Colliders → Rich e⁺e⁻ Physics Program ...

FCC

...plus an excellent hh program beyond ee Circular Colliders

The potential of an hh machine at the energy frontier in the same circular tunnel is also excellent:

- Measurement of Higgs Self-coupling at the 3 to 4% level
- Highest reach in sensitivity for di-higgs studies, dark matter searches and more
- New heavy particles could be directly discovered for masses up to 20-40 TeV
- Large potential also from indirect searches

FCC

Gregori

• Possibility for an eh and/or Heavy-ion program at the highest energies

But we are not ready to build the *hh* machine soon, more R&D on the magnets is needed, and reaching the high energy frontier with a Muon Collider could take even more time, if proven possible

→ European Strategy recommendations in 2020

"Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV, with an electron-positron Higgs and electroweak factory as a possible first stage."
"Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update." → FCC Feasibility study

Future Circular Collider Feasibility Study

LHC HL-LHC

Goal of the study:

SPS

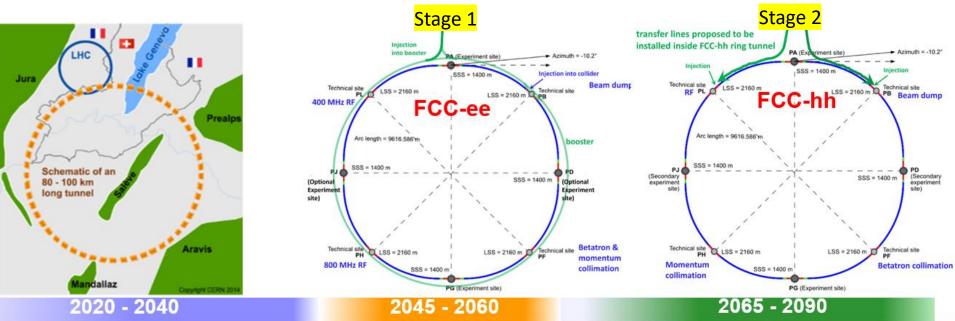
http://cern.ch/fcc

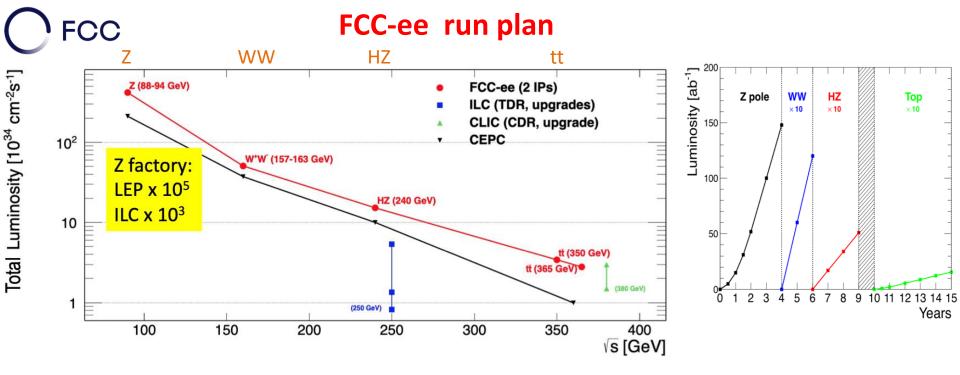
Provide by 2025 conclusions on the technical and financial feability of the FCC-INT project, to be submitted/approved at the next European Strategy in 2026, eventually allowing to start digging the tunnel

photo: J. Wenninger 10

FCC

FCC The FCC integrated program (FCC-INT) at CERN is inspired by the successful LEP – LHC (1976-2041) program

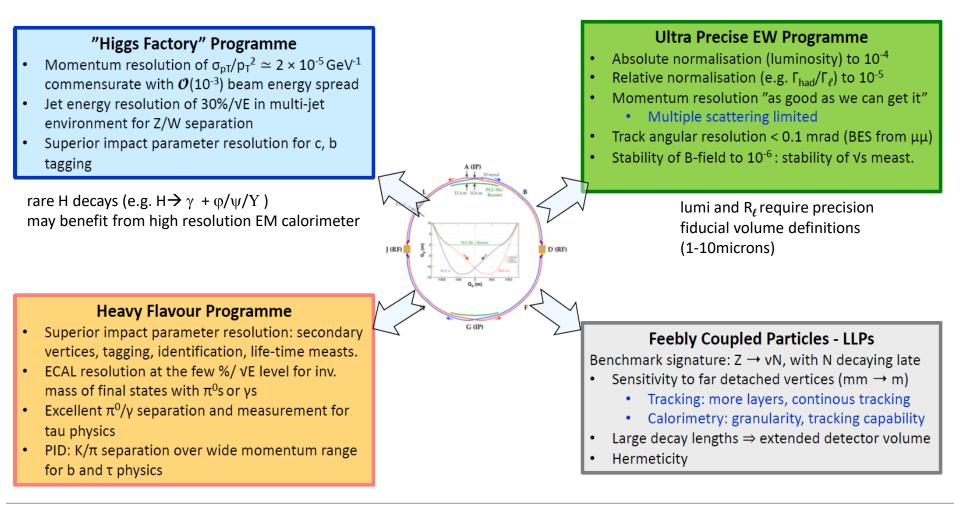

Comprehensive cost-effective program maximizing physics opportunities


- Stage 1: FCC-ee (Z, W, H, tt) as first generation Higgs, EW and top factory at highest luminosities.
- Stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with heavy ions and eh options.

Complementary physics

- Integrating an ambitious high-field magnet R&D program
- Common civil engineering and technical infrastructures
- Building on and reusing CERN's existing infrastructure.

The FCC-INT project is fully integrated with HL-LHC exploitation and provides a natural transition for higher precision and energy

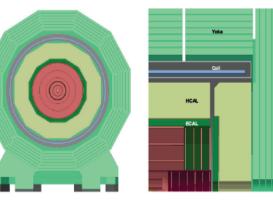


Phase	Run duration	Center-of-mass	Integrated	Event	Extracted from
	(years)	Energies (GeV)	Luminosity (ab^{-1})	Statistics	
FCC-ee-Z	4	88-95 ±<100	KeV 150	3×10^{12} visible Z decays	LEP * 10 ⁵
FCC-ee-W	2	158-162 <200	KeV 12	10 ⁸ WW events	LEP * 2.10 ³
FCC-ee-H	3	240 ± 1 M	leV 5	10 ⁶ ZH events	Never done
FCC-ee-tt	5	345-365 ±2 M	1.5	$10^6 t\bar{t}$ events	Never done

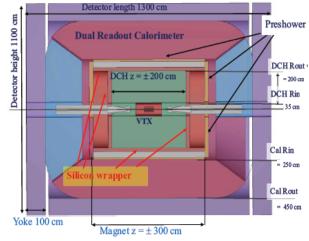
+ possible Run at the H pole (125 GeV) to access the Hee Yukawa coupling (never done, not doable anywhere else)

Gregorio Bernardi APC - Paris

Detector requirements (present status)

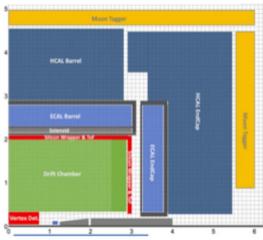


Detectors under Study


IDEA

CLD

conceptually extended from the CLIC detector design


- full silicon tracker
- 2T magnetic field
- high granular silicon-tungsten ECAL
- high granular scintillator-steel HCAL
- instrumented steel-yoke with RPC for muon detection

explicitly designed for FCC-ee/CepC

- silicon vertex
- low X₀ drift chamber
- drift-chamber silicon wrapper
- MPGD/magnet coil/lead preshower
- dual-readout calorimeter: lead-scintillating cerenkhov fibers

Noble Liquid ECAL

explicitely designed for FCC-ee, recent concept, under development

- silicon vertex
- Low X₀ drift chamber
- Thin Solenoid before the Calorimeter
- High Granularity Liquid Argon Calorimetry

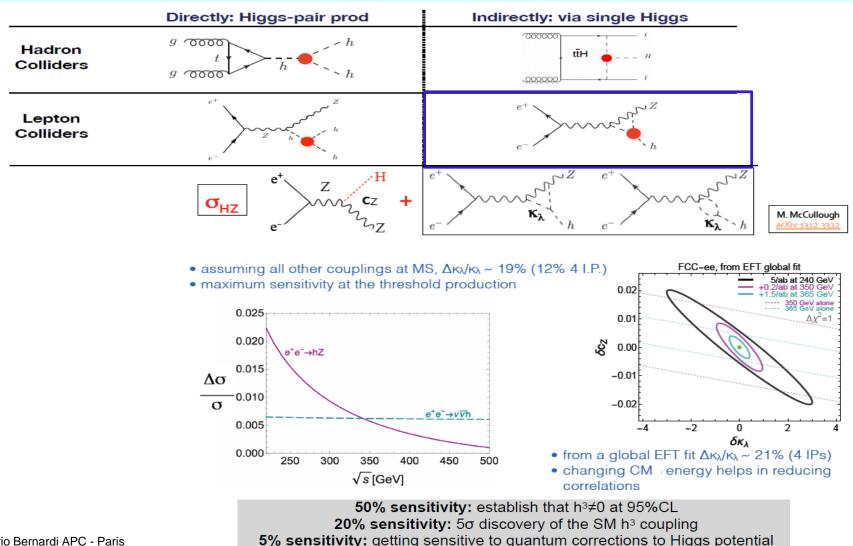
But several other options like Crystal Calorimetry (active in US, Italy), are under study (similarly for tracking, muons and particle ID)

With potentially 4 experiments, many complementary options will be implemented

Gregorio Bernardi APC - Paris

Physics of the Higgs boson at FCC-ee

Statistics-limited measurements: $\rightarrow ZH) \propto g_{HZZ}^2$ Higgs couplings to fermions & bosons absolute HZZ coupling meas. \rightarrow Model-independent measurements, normalized to e+e- \rightarrow ZH cross-section Events/1 GeV 25 5 ab \rightarrow fixed candle (H \rightarrow ZZ) for past and future (FCC-hh) studies at hadron colliders ww Higgs properties: CP violation, $H \rightarrow gg$, Higgs width, Higgs mass Δm_H ~ 10 Me 70 80 90 100 110 120 130 140 150 **Close to discovery level:** m_{Becoil} (GeV) - Higgs self-coupling via loop diagrams : \rightarrow complementarity to HH production at higher energy machines, like HL-LHC, or later FCC-hh


- Unique possibility studied at FCC-ee:
 Measure Higgs to electron coupling in s-channel production e+e-→H @ √s = 125 GeV
 - highly demanding on luminosity, monochromatization with 2 or 4 IPs?

Baseline (2IP): at 240 and 365 GeV, collect in total 1.2M ZH events and 0.1M WW \rightarrow H events

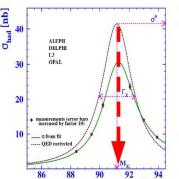
ightarrow test of first generation yukawa coupling

 $m_H^2 = s + m_Z^2 - 2\sqrt{s(E_+ + E_-)}$

Measurement of the Higgs self-coupling

Gregorio Bernardi APC - Paris

16


The Tera-Z program at the Z peak and Electroweak Physics

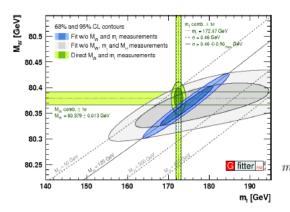
The electroweak program at the Z peak and at the WW threshold is quite unique, most challenging, and could be the most promising part of the program given the statistics !

- L = 230/cm²/s and 35 nb of Z cross section corresponds to 80 kHZ of events with typically 20 charged and 20 neutral particles (all to be fully recorded, stored, reconstructed)
- 3 years at 10^7 s /year = 2.4 10^{12} evts/exp. \rightarrow 10^5 LEP Statistics (~10³ more than ILC)

For the electroweak program we will also have

• 2 years at the WW threshold, 10⁸ events/exp. → 2.10³ LEP Statistics

 Beam energy measured with extraordinary precision (∆√s≈100 keV) using resonant depolarization of transversely polarized beams (method already used at LEP, much better prepared now, calibrations in situ with pilot bunches, no energy extrapolations, ...)


m₇: position of Z peak

 Beam width/asymmetries studied analyzing the longitudinal boost distribution of the μμ system

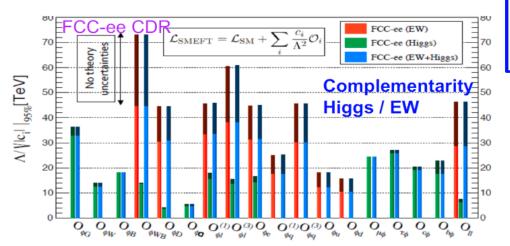
Expected precisions in a nutshell:

- $\approx 10^{-4}$ on cross sections (aimed luminosity uncertainty); possibility to reduce it by an order of magnitude using the measured $\sigma(ee \rightarrow \gamma\gamma)$ as reference
- \circ ≈ 10⁻⁶ statistical uncertainties (≈ 1/ √N) on relative measurements like forward-backward charge asymmetries
- Ultimate uncertainties typically dominated by systematics; precious value of "Tera" Z samples to study / constrain many of those uncertainties

With m_{top}, m_W and m_H fixed by measurements: the SM has nowhere to go !

Increased precision could show first hints of physics beyond the SM.

- Improve the direct determination of MW and Mtop
 - PDG 2020: MW to 12 MeV
- And the SM fit prediction for these quantities, e.g. :

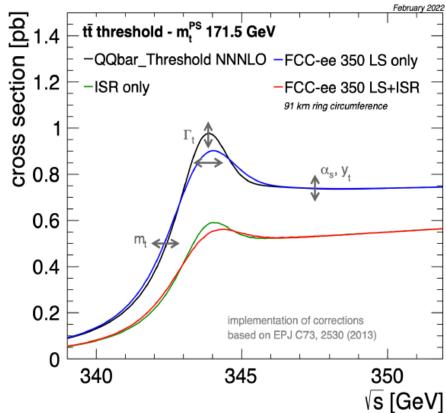

$$\begin{split} m_{\rm W} &= 80.3584 \pm 0.0055_{m_{\rm top}} \pm 0.0025_{m_Z} \pm 0.0018_{\alpha_{\rm QED}} \\ &\pm 0.0020_{\alpha_{\rm S}} \pm 0.0001_{m_{\rm H}} \pm 0.0040_{\odot} \qquad CeV \\ &= 80.358 \pm 0.008_{\rm total} \quad {\rm GeV}, \end{split}$$

Requires improved measurements of m_{top} , m_Z , $\alpha_{QED}(m^2_Z)$, α_S ... and more generally all usual EWPO included in the EW fits.

(*) current guess

EW & QCD precision measurement examples

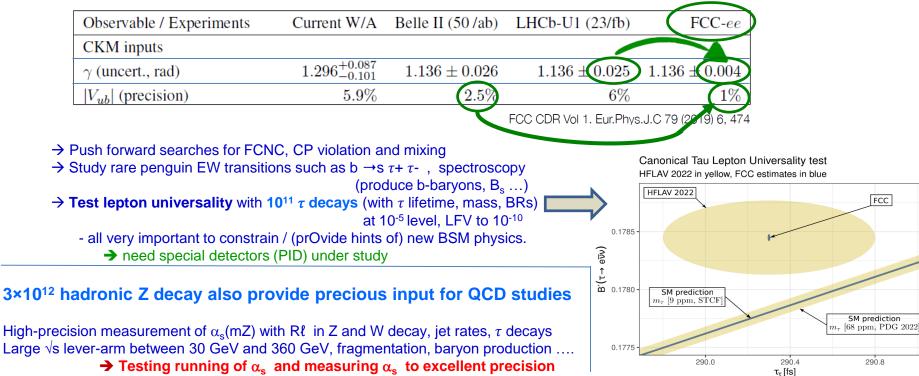
	stat	w/ syst (*)	improvement
Mw	400 keV	500 keV	30
Mz	4 keV	< 100 keV	> 20
Γ _z	4 keV	< 25 keV	> 100
$\sin^2 \theta_{\rm eff}$ ($ au$ pol)		3 10 ⁻⁶	60
$\alpha_{\text{QED}}(\text{m}^2_{\text{Z}})$	3 10 ⁻⁵	3 10 ⁻⁵	4 (stat. lim. !)
Rb	3 10- 7	2 10 ⁻⁵	30
alphaS(m2Z)	105	10 ⁻⁴	30
Mtop	20 MeV	40 MeV	12


- Huge statistics: very small stat errors call for very small syst uncertainties too.
 - E.g. acceptances, should be known to 10-4 – 10-5
- Goal: σ(exp syst) ≈ σ(stat)
- Work on theo. side also critical (and initiated, 1809.01830)

One key experimental handle: knowledge of \sqrt{s} (exquisite at circular collider with resonant depolarisation method, at Z & WW)

In terms of weakly-coupled new physics: FCC-ee precision corresponds to sensitivity on Λ_{NP} up to 70 TeV, anticipating what FCC-pp would focus on.

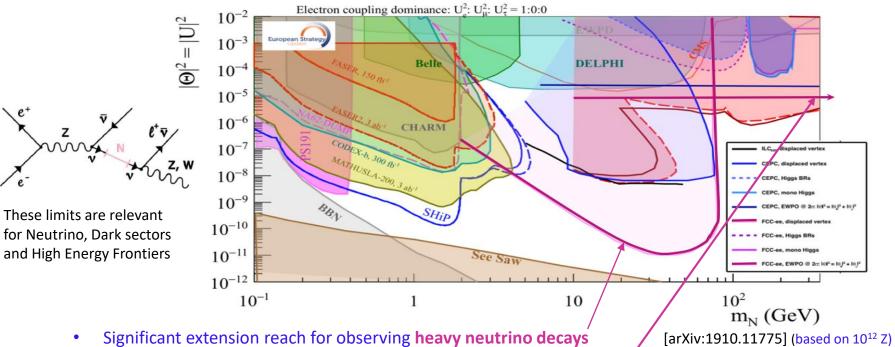
- Expect 1 M $t\bar{t}$ events, not so many compared to LHC, but in a clean environment and with the ability to scan \sqrt{s}
- Test of Higgs mechanism via measurement of top mass and top Yukawa coupling
 - m_t measurement at FCC-ee with clear interpretation from cross section measurement near threshold
 - Simultaneous fit for m_t and Γ_t with statistical uncertainties of 17 MeV and 45 MeV respectively
 - Scale uncertainty of 45 MeV on m_t from N³LO QCD
- Extract *ttZ* coupling from $\sigma(e^+e^- \rightarrow Z/\gamma^* \rightarrow t \bar{t})$
 - \rightarrow uncertainty ~10 times smaller than @HL-LHC
 - → key input to extract top Yukawa coupling from FCC with reduced theory uncertainty



Progress in flavour physics w.r.t. SuperKEKb / BELLE II requires > 10¹¹ b pair events, FCC-ee(Z): will provide ~10¹² b pairs

Particle production (10^9)	B^0	B^-	B_s^0	Λ_b	$c\overline{c}$	$\tau^{-}\tau^{+}$
Belle II	27.5	27.5	n/a	n/a	65	45
FCC-ee	400	400	100	100	800	220

Precision of CKM matrix elements


FCC

Searches for Feebly Interacting particles

- We need new physics to explain the Universe puzzles without interfering with SM radiative corrections
 Searches for new feeble interactions/particles
- Dark photons, Axion Like Particles (ALP's), sterile neutrinos, are all *feebly coupled* to SM particles
- FCC-ee can be compared to the other machines for its sensitivity to right-handed (sterile) neutrinos

• Large potential improvement in the sensitivity to **mixing of neutrinos** to the dark sector, using EWPOs $(G_F vs sin^2 \theta_W^{eff} and m_z, m_W$ tau decays) which extends sensitivity to 10^{-5} mixing, all the way to very high energies (500-1000 TeV) [arXiv:2011.04725]

Summary: FCC-ee discovery potential and Highlights

FCC-ee could explore, observe and discover :

- **Explore** the 10-100 TeV energy scale (and beyond) with Precision Measurements 20-100 fold improved precision on many EW quantities (equivalent to factor 5-10 in mass) $m_{Z_{c}} m_{W}, m_{top}, \sin^2 \theta_{w}^{eff}, R_{b}, \alpha_{QED}, \alpha_{s}$, Higgs and top quark couplings, and provide model independent Higgs measurements which can be propagated to LHC and FCC-hh
- **Observe** at the > 3σ level, the Higgs couplings to the 1st generation, the Higgs Self-coupling
- Discover a violation of flavour conservation or universality and unitarity of PMNS @10⁻⁵ FCNC (Z --> μτ, eτ) in 5 10¹² Z decays and τ BR in 2 10¹¹ Z→ τ τ + flavour physics (10¹² bb events) (B→s τ τ etc..)
- **Discover** dark matter as «invisible decay» of H or Z (or in LHC loopholes)
- **Discover** very weakly coupled particle in the 5 to 100 GeV energy scale such as: Right-Handed neutrinos, Dark Photons, ALPS, etc...
- Many other opportunities in e.g. QCD ($\alpha_s @ 10^{-4}$, fragmentations, H \rightarrow gg) etc....

> Not only a Higgs Factory! Z, Heavy Flavour, QCD and top are also important for 'discovery potential'

More info at the FCC Physics in Cracow (1/2023): <u>https://indico.cern.ch/event/1066234/</u>

Gregorio Bernardi APC - Paris

FCC

• & at the 6th Annual FCC Week in London (6/2023): https://indico.cern.ch/event/1064327/

FCC main goals until 2025, Outlook

Overall goal:

• Perform all necessary steps and studies to enable a project decision by 2026/27, at the anticipated date for the next ESU, and a subsequent start of civil engineering construction by 2028/29.

This requires successful completion of the following four main activities:

- Develop and establish a governance model for project construction and operation
- Develop and establish a financing strategy, including in-kind contributions
- Prepare all required project preparatory and administrative processes with the host states
- Perform site investigations to enable Civil Engineering planning and to prepare its tendering.

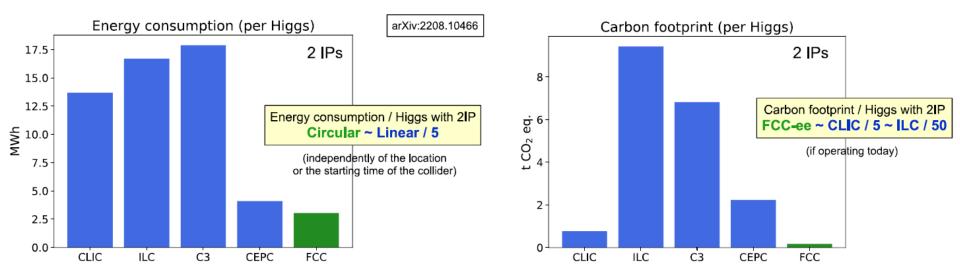
In parallel development preparation of TDRs and physics/experiment studies:

- Machine designs and main technology R&D lines
- completion of first physics case studies in 2021-22 \rightarrow detector requirements
- reach out to all 'European and International Partners'
- Establish user communities, work towards proto experiment collaboration by 2025/26
- R&D/detector concept studies and physics potential:
 - Higgs (including self-coupling and 1st generation)
 - Heavy Flavor Physics and Tau physics

- Precision EW, top, and QCD measurements
- LLP's detection and other BSM searches

FCC, thanks also to synergies and complementarities between ee and hh machines,

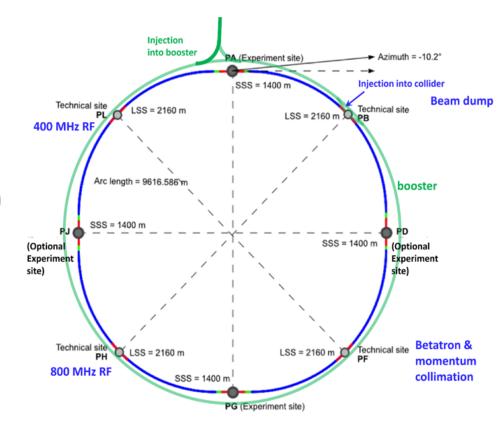
offers the best approach to today's physics landscape


FCC-ee can be constructed while accomplishing the HL-LHC program

backup

FCC Energy consumption and Carbon footprint: FCC vs. other projects

- Our first responsibility (as particle physicists) is to do the maximum of science
 - With the minimum energy consumption and the minimum environmental impact for our planet
 - Should become one of our top-level decision criteria for design, choice and optimization of a collider
- All Higgs factories have a "similar" physics outcome (ESU'20 and Snowmass'21)
 - Natural question: what is their energy consumption or carbon footprint for the same physics outcome?
 - Circular colliders have a much larger instantaneous luminosity and operate several detectors
 - FCC-ee is at CERN, where electricity is already almost carbon-free

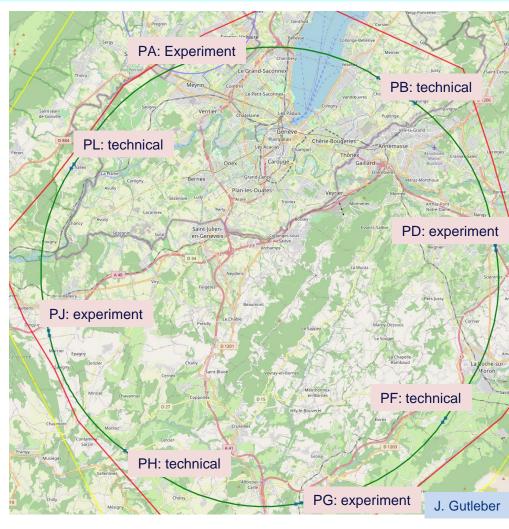

Gregorio Bernardi APC - Paris

Frank Zimmermann

FCC Accelerator Science & Technology

CIRCULARee design choices & new "lowest risk" layout

- Double ring e+ e- collider
- **Common footprint with FCC-hh**, except around IPs
- Asymmetric IR layout and optics to limit synchrotron radiation towards the detector
- 2 or 4 IPs, large horizontal crossing angle 30 mrad, crab-waist collision optics (layouts with 4 IPs under study now)
- Synchrotron radiation power 50 MW/beam at all beam energies
- Top-up injection scheme for high luminosity Requires booster synchrotron in collider tunnel


FCC : optimized placement and layout

Following extensive placement review, choice made

8-site baseline "PA31"

Number of surface sites	8
LSS@IP (PA, PD, PG, PJ)	1400 m
LSS@TECH (PB, PF, PH, PL)	2143 m
Arc length	9.6 km
Sum of arc lengths	76.9 m
Total length	91.1 km

- 8 sites less use of land, <40 ha instead 62 ha
- Possibility for 4 experiment sites in FCC-ee
- All sites close to road infrastructure (< 5 km of new road constructions for all sites)
- Vicinity of several sites to 400 kV grid lines
- Good road connection of PD, PF, PG, PH suggest
 operation pole around Annecy/LAPP
- Exchanges with ~40 local communes in preparation

FUTURE CIRCULAR COLLIDER FCC feasibility study organization - Approved by CERN Council September 2021									
FCC Study Leader		:	Study support and coordination						
M. Benedikt	udy/collaboration secretariat	collaboration building E. Tsesmelis	Communications J. Gillies (local com.						
Physics, experimentsAcceleratorsand detectorsT. RaubenheimP. Janot, C. GrojeanF. Zimmerman		Techn. coordination techn. infrastructure K. Hanke		Host State proces and civil engineer T. Watson (1 Nov.)	ring financing models				
physics programme ee design K. Oide, A. M. McCullough, F. Simon Chance		Electricity dist	ribution JP. Burnet	t administrative proce F. Eder, J. Gutlebe					
detector concepts M. Dam, F Sefkow, P.Rolo	hh design M. Giovannozzi	cooling & ve	entilation G. Peon	placement studie J. Gutleber, V. Merte					
physics performance P. Azzi, E. Perez	technology R&D R. Losito	integration, installation, transport, logistics, JP Corso, C Colloca, C Prasse			ation procurement strategy and rules NN				
software and computing G. Ganis, C. Helsens	ee injector P. Craievich, A. Grudiev	general safety, access, radiation protection, T. Otto		tunnel, subsurface de J. Osborne	esign in-kind contributions NN				
ee MDI M. Boscolo, M. Sullivan		Computing, controls, communication, networks D. Duellmann		on, surface buildings des NN	sign operation model P. Collier & J. Wenninger				
ee energy calibration & polarization (EPOL) J. Wenninger A. Blondel		geodesy & survey H. Mainaud Durand, A. Wieser		surface sites layout access NN	and				
		Cryogenics sy	/stems L.P. Delprat						
			ntenance, availabilit ity J. Nielsen	у,					

Gregorio Bernardi APC - Paris

Status of Global FCC Collaboration

Increasing international collaboration as a prerequisite for success:

links with science, research & development and high-tech industry will be essential to further advance and prepare the implementation of FCC

Countries

FCC Feasibility Study: 58 fully-signed previous members, 17 new members, MoU renewal of remaining CDR participants in progress

Gregorio Bernardi APC - Paris

47

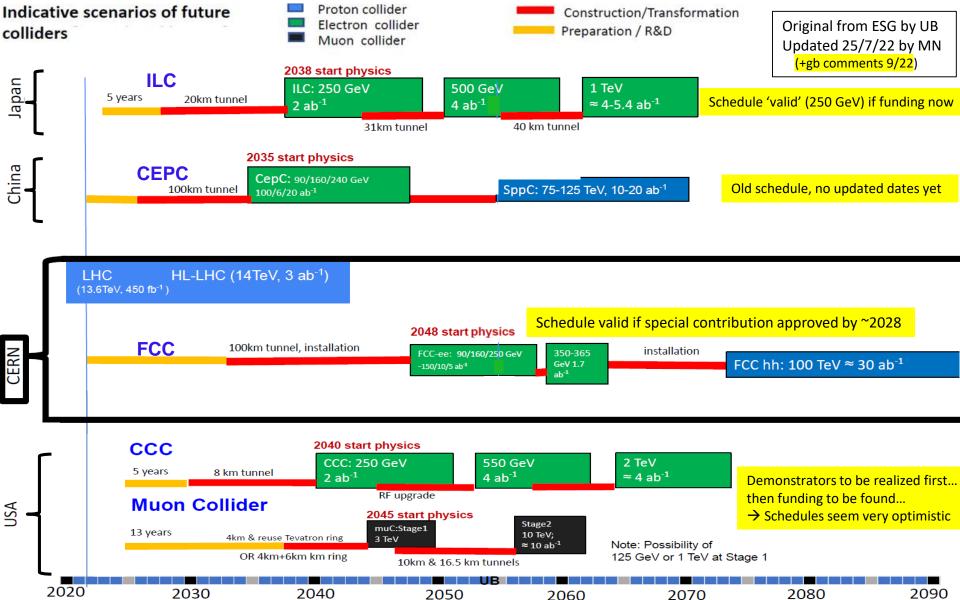
30

Companies

FCC-ee and FCC-INT cost estimates

Cost in MCHF	Stage 1: Civil Engineering
5,400	19%
2,200	Stage 1 Technical Infrastructure Stage 2 FCC-hh Machine and Injector complex
4,000	8% 47%
600	Stage 1 FCC-ee Machine and Injector Complex 14%
2,800	Stage 2 Technical
13,600	Infrastructure adaptation 10%
28,600	Stage 2 Civil Engineering complement 2%
-	MCHF 5,400 2,200 4,000 600 2,800 13,600

Total construction cost FCC-ee (Z, W, H) amounts to 10.5 BCHF + 1.1 BCHF (tt)

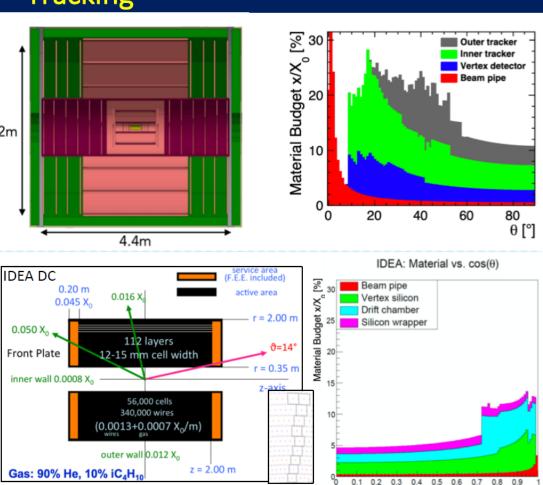

- Associated to a total project duration of ~20 years (2028 – 2048)

Need for the tunnel a special contribution of about 5 BCH.

Total construction cost for subsequent FCC-hh amounts to 17 BCHF.

- Associated to a total project duration of ~25 years (2040 – 2065)

- (FCC-hh standalone would cost ~25 BCHF, so not building FCC-ee in a first stage would be a marginal saving) Gregorio Bernardi APC - Paris


Tracking

4.2m

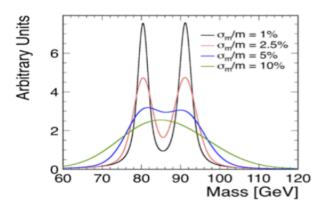
Two solutions under study

 CLD: All silicon: pixel VTX + strips tracker \Box Inner: 3 (7) barrel (fwd) layers (1% X₀ each) \Box Outer: 3 (4) barrel (fwd) layers (1% X₀ each) □ Separated by support tube @ r= 675 mm $(2.5\% X_0)$

- IDEA: Extremely transparent Drift Chamber
 - □ GAS: 90% He 10% iC₄H₁₀
 - Radius 0.35 2.00 m
 - □ Total thickness: 1.6% of X₀ at 90°
 - Tungsten wires dominant contribution
 - □ Full system includes Si VXT and Si "wrapper"

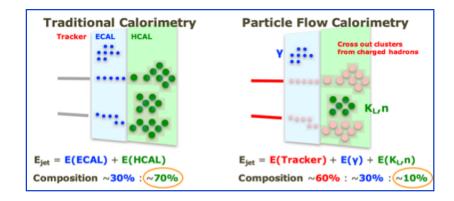
cos 🗄

Calorimetry – Jet Energy Resolution


 $\mbox{Energy coverage} \lesssim 180 \mbox{ GeV}: \ \ 22 \ X_0 \mbox{, } 7\lambda$

Jet energy: $\delta E_{\rm jet}/E_{\rm jet} \simeq 30\% \, / \, v E \, [GeV]$

⇒ Mass reconstruction from jet pairs


Resolution important for control of (combinatorial) backgrounds in multi-jet final states

- Separation of HZ and WW fusion contribution to vvH
- HZ \rightarrow 4 jets, tt events (6 jets), etc.
- At $\delta E/E \simeq 30\% / VE$ [GeV], detector resolution is comparable to natural widths of W and Z bosons

To reach jet energy resolutions of ~3%, detectors employ

- highly granular calorimetry
- Particle Flow Analysis techniques

Technologies being pursued

- a) CALICE like extremely fine segmentation (ILC, CLIC, CLD)
 - ECAL: W/Si or W/scint+SiPM
 - HCAL: steel/scint+SiPM or steel/glass RPC
- b) Parallel fiber dual readout calorimeter (IDEA)
 - Fine transverse segmentation; longitudinal inf. via timing
- c) Noble Liquid (e.g. LAr) ECAL + CALICE-like HCAL

- Fine segmentation, high stability, $\delta E_{EM}/E_{EM} \sim 6\text{-}9\%$

ILD and FCC

Ties Behnke 9.2.2023 ILD as a group got started around 2008

ILD's roots are linear colliders, ILC in particular

ILD's main objective is to develop the best possible experiment for a Higgs/ Electroweak and beyond facility

Result of recent membership confirmation:

- 58 institutes confirmed ILD membership
- Around 10 institutes as guests members

ILD has a concept of the detector, well defined with technological options where

The main components of ILD have been validated and beam-tested.

A coherent System design has been developed.

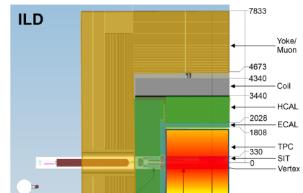
A complete and detailed Geant4 model of ILD exists and is used

ILD is very interested to contribute to the studies of such detectors at linear and circular collider concepts, to develop the best possible experimental proposal for a future Higgs factory

Particle Flow:

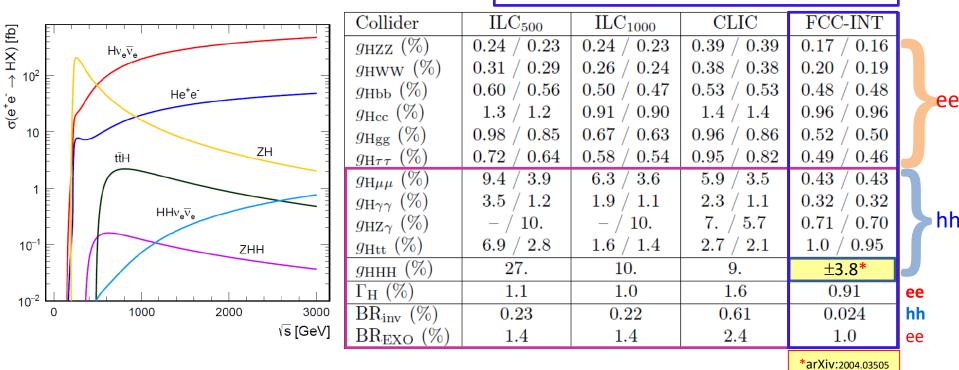
The central guiding principle for the design of ILD:

- Granularity
- Hermeticity


Low material inner region

- Very thin Silicon
- Large volume TPC

Particle ID is important


- PID in TPC
- Timing as additional handle

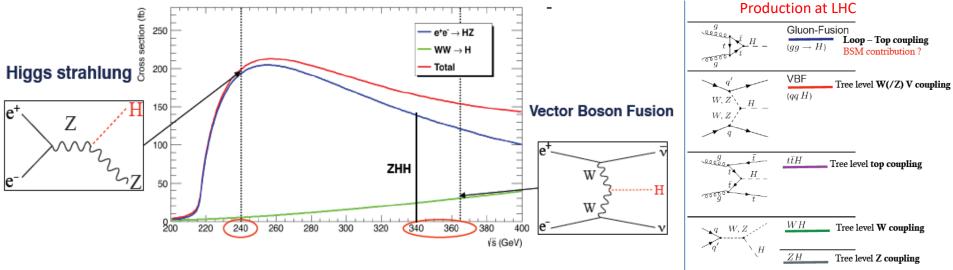
FCC Higgs with High Energy colliders: ILC₅₀₀₋₁₀₀₀, CLIC₃₀₀₀, FCC-INT

FCC-INT =FCC-ee + FCC-hh has the best expectations

$FCC-hh > 10^{10} H produced$

+

 \rightarrow


FCC-ee measurement of g_{HZZ}

Gregorio Bernardi APC - Paris

 g_{HHH} , $g_{H\gamma\gamma}$, $g_{HZ\gamma}$, $g_{H\mu\mu}$, Br_{inv} at high precision

Higgs boson production at FCC-ee

FCC-ee as a Higgs factory:

Higgs-strahlung (e+e \rightarrow ZH): event rate & Signal/Bkgd are optimal at $\sqrt{s} \sim 240$ GeV : $\sigma \sim 200$ fb

- 1.2 × 10^6 e+e- \rightarrow ZH events with 5 ab⁻¹
- Target : (few) per-mil precision, statistics-limited.
- Complemented with ~100k events at $\sqrt{s} = 350 365$ GeV (of which 30% are via the WW fusion channel)
 - → useful for measuring self-coupling and Γ_H precisely.
- The Higgs-strahlung process is an s-channel process → maximal just above the threshold of the process
- Vector Boson Fusion is a t-channel process which yields a cross section that grows logarithmically with the c-o-mass energy
- The Higgs boson is also produced in association with fermion pair for instance, a top quark pair.

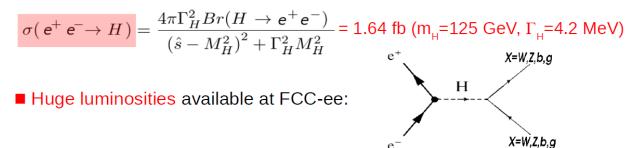
Couplings Measurements Comparison across Machines

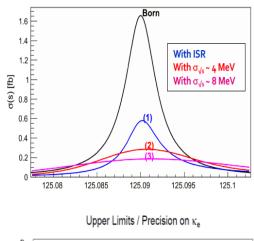
Collider	HL-LHC	ILC_{250}	CLIC ₃₈₀	LEP3240	$CEPC_{250}$	FCC-ee ₂₄₀₊₃₆₅		
Lumi (ab ⁻¹)	3	2	1	3	5	5_{240}	$+1.5_{365}$	+ HL-LHC
Years	25	15	8	6	7	3	+4	
$\delta\Gamma_{\rm H}/\Gamma_{\rm H}$ (%)	SM	3.6	4.7	3.6	2.8	2.7	1.3	1.1
$\delta g_{\rm HZZ}/g_{\rm HZZ}$ (%)	1.5	0.3	0.60	0.32	0.25	0.2	0.17	0.16
$\delta g_{\rm HWW}/g_{\rm HWW}$ (%)	1.7	1.7	1.0	1.7	1.4	1.3	0.43	0.40
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	3.7	1.7	2.1	1.8	1.3	1.3	0.61	0.56
$\delta g_{ m Hec}/g_{ m Hec}$ (%)	SM	2.3	4.4	2.3	2.2	1.7	1.21	1.18
$\delta g_{\mathrm{Hgg}}/g_{\mathrm{Hgg}}$ (%)	2.5	2.2	2.6	2.1	1.5	1.6	1.01	0.90
$\delta g_{\rm HTT}/g_{\rm HTT}$ (%)	1.9	1.9	3.1	1.9	1.5	1.4	0.74	0.67
^{δg} нµµ/g _н µµ (%)	4.3	14.1	n.a.	12	8.7	10.1	9.0	3.8
$\delta g_{\rm H} \gamma \gamma / g_{\rm H} \gamma \gamma $ (%)	1.8	6.4	n.a.	6.1	3.7	4.8	3.9	1.3
$\delta g_{ m Htt}/g_{ m Htt}$ (%)	3.4	-	-	-	-	-	-	3.1
BR _{EXO} (%)	SM	< 1.7	< 2.1	< 1.6	< 1.2	< 1.2	< 1.0	< 1.0

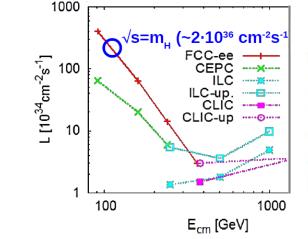
LHC caveats:

- Measure only couplings ratios
- Many SM couplings cannot be seen at LHC (light quarks, charm, electrons)
- − Couplings to gluons are measured through $gg \rightarrow H$ production cross section

HL-LHC will produce many more Higgs than FCC-ee, hence dominate precisions for Hµµ, Hγγ, Htt

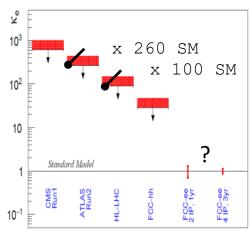

Gregorio Bernardi APC - Paris


The precisions on these **FCC-ee** couplings are given for 2 IP. They will improve by ~30% with 4IP


Yukawa coupling to electrons via s-channel e+e- \rightarrow H production

First generation Yukawa coupling will not be accessible at HL-LHC, FCC-hh or any other ee machine

- Higgs decay to e⁺e⁻ is unobservable: BR(H→e⁺e⁻) $\propto m_e^{-2} \approx 5 \cdot 10^{-9}$
- Resonant Higgs production considered so far only for muon collider: $\sigma(\mu\mu\rightarrow H) \approx 70 \text{ pb. Tiny } \kappa_{\rho} \text{ Yukawa coupling} \Rightarrow \text{Tiny } \sigma(ee\rightarrow H):$


In theory, FCC-ee running at H pole-mass $L_{int} \approx 20 \text{ ab}^{-1}/\text{yr}$ would produce O(30.000) H's

IF we can control: (i) beam-energy spread,(ii) ISR, and (iii) huge backgrounds, then:

- → Electron Yukawa coupling measurable.
- → Higgs width measurable (threshold scan)?

→ Separation of possible nearly-degen. H's?

Most significant channel: $e^+e^- \rightarrow H \rightarrow gg$ \rightarrow ji final state

FCC

Gregorio Bernardi APC - Paris

O FCC

Physics of the Higgs boson at FCC-ee

Higgs measurements that are already studied at FCC-ee:

- $\sigma(ZH)$ and mH from Higgs recoil, $Z \rightarrow II$
- Higgs couplings to b, c, g, s
- Higgs to invisible
- Higgs self-coupling from precise σ (ZH) measurements at 240 and 365 GeV
- ee \rightarrow H production in s-channel at 125 GeV
- $\sigma(ZH)$ in $Z \rightarrow qq$ (starting)

Higgs measurements which are not studied yet:

Measurement	Requirements
Direct reconstruction of mH in hadronic final states	jet angular resolution, kinematic fits, b-tag effi & purity (Possible link with meas. of $\sigma(ZH)$ in $Z \rightarrow qq$)
Γ(H) • H → ZZ • ZH(WW), ZH(bb), ννH(bb)	 Lepton ID efficiencies; jet clustering algorithms, jet directions, kinematic fits Visible and missing mass resolutions [expression of interest, but many channels]
HZ γ coupling (production and decay)	photon identification, energy and angular scale
Rare decays: $H \rightarrow \gamma\gamma$ and $H \rightarrow \mu\mu$ (unlikely to do better than HL-LHC)	Photon ID and resolution, track resolution
$H \rightarrow \tau \tau$ and CP studies	Tau reconstruction, Pi0 id

Gregorio Bernardi APC - Paris

U FCC	Sta opport	tistical unities	Syster challe	matics enges			
Observable	prese	ent	FCC-ee	FCC-ee		Commen	t and
		$ue \pm error$	Stat.	Syst.		leading exp.	
m _z (keV)	911867	00 ± 2200	4	100	Fro	m Z line shape	scan
			_			n energy calibr	
$\Gamma_{\rm Z}$ (keV)	24952	00 ± 2300	4	25		m Z line shape	
,						n energy calibr	
$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	2314	80 ± 160	2	2.4	i	from A ^{µµ} _{FB} at Z	peak
					Bear	n energy calibr	ation
$1/lpha_{ m QED}({ m m}_{ m Z}^2)(imes 10^3)$	1289	52 ± 14	3	small		from $A_{FB}^{\mu\mu}$ off	peak
					QED&1	EW errors dom	
R_{ℓ}^{Z} (×10 ³)	207	67 ± 25	0.06	0.2-1	ratio o	f hadrons to le	ptons
					accep	otance for lep	tons
$\alpha_{\rm s}({\rm m}_{\rm Z}^2)~(\times 10^4)$	11	96 ± 30	0.1	0.4-1.6		from R_{ℓ}^{Z}	
$\sigma_{\rm had}^0$ (×10 ³) (nb)	415	41 ± 37	0.1	4	peak ha	dronic cross se	
had () ()						nosity measure	
$N_{\nu}(\times 10^3)$	29	96 ± 7	0.005	1		peak cross sec	
					Lumi	nosity measure	\mathbf{ment}
$R_{\rm b} ~(\times 10^6)$	2162	90 ± 660	0.3	< 60	ratio of bb to had		drons
					stat.	extrapol. from	SLD
$A_{FB}^{b}, 0 \ (\times 10^{4})$	9	92 ± 16	0.02	1-3	b-quark a	symmetry at Z	z pole
					•	from jet c	
$A_{FB}^{pol,\tau}$ (×10 ⁴)	14	98 ± 49	0.15	<2	τ pola	rization asym	netry
					-	τ decay pl	nysics
τ lifetime (fs)	290	0.3 ± 0.5	0.001	0.04		radial align	ment
$\tau \text{ mass (MeV)}$		86 ± 0.12	0.004	0.04	momentum s		
τ leptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. (%)		38 ± 0.04	0.0001	0.003	e/μ /hadron separa		ation
m _W (MeV)	803	50 ± 15	0.25	0.3		WW threshold	
						n energy calibr	
Γ_{W} (MeV)	20	85 ± 42	1.2	0.3		WW threshold	
					Bear	n energy calibr	
$\frac{\alpha_{\rm s}({\rm m}_{\rm W}^2)(\times 10^4)}{{\rm N}_\nu(\times 10^3)}$		70 ± 420	3	small	from I		
$N_{\nu}(\times 10^3)$	2920 ± 50		0.8	small		of invis. to lep	
2						radiative Z re	
$m_{top} (MeV/c^2)$	172740 ± 500		17	small		$m t\bar{t}$ threshold	
						CD errors dom	
$\Gamma_{\rm top}~({\rm MeV/c}^2)$	1410 ± 190		45	small		om t \overline{t} threshold	
					-	CD errors dom	
$\lambda_{ m top}/\lambda_{ m top}^{ m SM}$	1.2 ± 0.3		0.10	small		$m t\bar{t}$ threshold	
					•	CD errors dom	
ttZ couplings		$\pm 30\%$	0.5 - 1.59	small	From	$\sqrt{s} = 365 \mathrm{GeV}$	V run

Uncertainties in EWPO

Systematics on the Electroweak Precision Observables in the table are preliminary and often largely dominant

We use the statistical errors (after selection efficiencies and background subtractions) as the best way to assess the physics potential of a facility, since the systematic uncertainties get generally reduced making clever use of the statistics and additional theoretical calculations

We are concentrating now on finding the potential 'show stoppers' or 'stumbling blocks', to guide the detector R&D and detector requirements.

Strong support for theoretical calculations will be needed if the program is to be successful

Theory work is critical and initiated (1809.01830)

EW measurements to be studied in detail:

	Measurement	Requirements				
	Total width of the Z	scale (magnetic field) stability				
	Rb, Rc, (AFB)	Flavour tagging, acceptance, QCD corrections				
peak	Ratio RI = Gamma_had / Gamma_I	Geometrical acceptance for lepton pairs				
Z pe	Tau polarisation	ECAL granularity				
	AFB (muons)	QED corrections				
	Luminosity from diphoton events	e/gamma separation, gamma acceptance				
77	Coupling of Z to nu_e	Photon energy resolution, acceptance, track eff				
threshold	$\sigma(ee \rightarrow WW)$ and MW (threshold scan ; direct reco also above threshold)	√s determination, bckgd control; angles, kinem. fits				
	Vcb via W -> cb	Flavour tagging				
\mathbb{N}	W leptonic BRs	Lepton ID, acceptance				
>	Meas of √s via radiative return	lepton and jet angular resolutions, acceptance				
ttbar	Top properties from threshold scan	Jet reco, b-tagging, kine fits				
Ħ	EW couplings of the top	Jet reco, b-tagging, kine fits				
	9/14/22	12 E Perez				

9/14/22

FCC

Flavour physics measurements to be studied in detail

	Measurement	Requirements			
	CP violation in Bs $\rightarrow \Phi \Phi$	PID, vertex, track resolution			
	$B0 \rightarrow \pi 0 \pi 0 (\rightarrow ee\gamma)$	Low energy γ 's in jets (ECAL resolution and granularity)			
	$Bs \rightarrow \tau \tau$	Vertexing			
peak	Meas of γ from B+ \rightarrow DK+	Ks reconstruction resolutions			
N	$\tau \rightarrow 3\mu, \tau \rightarrow \mu\gamma$				
	au lifetime	Alignment, scale of vertex detector,			
	τ BRs	Lepton ID, PID, e/pi separation			
	au mass	Track reco & resolution (in multi-track collimated environment)			
	Charm physics				
	Masses, spectroscopy, exotics				
MM	EW parameters, exclusive modes (Vcb, etc)	Flavour tagging			

Z peak

Higgs @ (HL)-LHC

١	s =	14	TeV,	3000	fb ⁻¹	per	experiment
---	-----	----	------	------	------------------	-----	------------

Credit:	М.	Kado	'22
---------	----	------	-----

	AS - CMS Run 1	ATLAS	CMS	Current precision	HL-LHC	Total Statistical Experimental	ATLAS and CMS HL-LHC Projection
C	combination	Run 2	Run 2	provident		— Theory	Uncertainty [%]
κ	13%	1.04 ± 0.06	1.10 ± 0.08	6%	1.8% κ _γ	.2% .4%	Tot Stat Exp Th 1.8 0.8 1.0 1.3
κ'_W	11%	1.05 ± 0.06	1.02 ± 0.08	6%	1.7% κ _w	=	1.7 0.8 0.7 1.3
κ _Z	11%	0.99 ± 0.06	1.04 ± 0.07	6%	1.5% κ _z	=_	1.5 0.7 0.6 1.2
к _g	14%	0.95 ± 0.07	0.92 ± 0.08	7%	<mark>2.5%</mark> κ _g		2.5 0.9 0.8 2.1
κ_t	30%	0.94 ± 0.11	1.01 ± 0.11	11%	3.4% κ _t		3.4 0.9 1.1 3.1
κ_b	26%	0.89 ± 0.11	0.99 ± 0.16	11%	3.7% κ _b		3.7 1.3 1.3 3.2
κ_{τ}	15%	0.93 ± 0.07	0.92 ± 0.08	8%	1.9% κ _τ	 _	1.9 0.9 0.8 1.5
κ_{μ}	-	$1.06^{+0.25}_{-0.30}$	1.12 ± 0.21	20%	4.3% κ _μ		4.3 3.8 1.0 1.7
κΖγ	-	$1.38_{-0.36}^{0.31}$	1.65 ± 0.34	30%	$9.8\% \kappa_{Z\gamma}$		9.8 7.2 1.7 6.4
\dot{B}_{inv}		< 11 %	< 16 %	11%	2.5%	0 0.02 0.04 0.06	0.08 0.1 0.12 0.14 Expected uncertainty
		Nature 607, 52-59 (2022)	Nature 607, 60-68 (2022)				ainties dominant o be 1/2 of Run 2)