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The Fission Process
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The Fission Process

Chemical Identification of Ba (Z=56)
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Chemical Identification of Ba (Z=56)
in Uranium Samples (Z=92) irradiated

by neutrons
Hahn and Strassmann (Dec. 1938)

Disintegration of Uranium by Neutrons: a New
Type of Nuclear Reaction

It seems therefore possible that the uranium
nucleus has only |small stability of form,|and may,
after neutron capture, divide itself into two nuclei
of roughly equal size (the precise ratio of sizes depend-
ing on finer structural features and perhaps partly on
chance). These two nuclei will repel each other and
should gain a total kinetic energy of ¢. 200 Mev., as
caleulated from nuclear radius and charge. This
amount of energy may actually be expected to be
available from the difference in packmg fraction
between uranium and the eleme of
the periodic system. The whoiei ‘fission’ process Ica.n
thus be described in an essentially classical way,
without having to consider quantum-mechanical
‘tunnel effects’, which would actually be extremely
small, on account of the large masses involved.

Meitner and Frisch, Nature (1939)
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Chemical Identification of Ba (Z=56)
in Uranium Samples (Z=92) irradiated

by neutrons
Hahn and Strassmann (Dec. 1938)

Disintegration of Uranium by Neutrons: a New
Type of Nuclear Reaction

It seems therefore possible that the uranium
nucleus has only |small stability of form,|and may,
after neutron capture, divide itself into two nuclei
of roughly equal size (the precise ratio of sizes depend-
ing on finer structural features and perhaps partly on
chance). These two nuclei will repel each other and
should gain a total kinetic energy of ¢. 200 Mev., as
caleulated from nuclear radius and charge. This
amount of energy may actually be expected to be
available from the difference in packmg fraction
between uranium and the eleme of
the periodic system. The whoiei ‘fission’ process Ica.n
thus be described in an essentially classical way,
without having to consider quantum-mechanical
‘tunnel effects’, which would actually be extremely
small, on account of the large masses involved.

Meitner and Frisch, Nature (1939)

85 years of experimental and conceptual challenges -



The importance of fission

Huge amount of energy released per fission event: ~ 200 MeV!
Few eV for combustion of a molecule of coal, gas or oil...

*Nuclear technology => production of *— ' — . o
* electricity (~10% of present electricity production) 235U ~® ‘ O
* radio-isotopes for medecine ﬂ

* Radioactive lons Beams

* Nuclear astrophysics, synthesis of elements via the r-process

S-process

Lead (82) —»
Platinum

Fission sets the end point of

T L ’ the r-process and strongly
g R — influences the r-process
& .
; L abundances and light curves!
3 Niéke'cy(za) s '- ! Beta-decay N\,___,
(20— g Neutron capture

Fusion processesin stars

Number of neutrons  s——Jp-



Why Nuclei Fission ?
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A Macroscopic point of view :
Fission of a liquid drop of nuclear matter

evaporation
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Aren’t nuclei guantum objects governed by the nuclear Force 7

Disintegration of Uranium by Neutrons: a New
Type of Nuclear Reaction

Following up an observation of Curie and Savitch?,
Hahn and Strassmann! found that a group of at
least three radioactive bodies, formed from uranium
under neutron bombardment, were chemically similar
to barium and, therefore, presumably isotopie with
radium. Further investigation®, however, showed
that it was impossible to separate these bodies from
barium (although mesothorium, an isotope of radium,
was readily separated in the same experiment), so
that Hahn and Strassmann were forced to conclude
that isotopes of barium (Z = 58) are formed as a
consequence of the bombardment of uranium (Z = 92)
with neutrons.

It seems therefore possible that the wuranium
nucleus has only small stability of form, and may,
after neutron capture, divide itself into two nuclei
of roughly equal size (the precise ratio of sizes depend-
ing on finer structural features and perhaps partly on
chance). These two nuclei will repel each other and

Meitner and Frisch Nature (1939)



Aren’t nuclei guantum objects governed by the nuclear Force 7

Fission Fragments Mass Yields

Disintegration of Uranium by Neutrons: a New

Apost, 238U(n,f), En=2MeV
Type of Nuclear Reaction g T
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Aren’t nuclei guantum objects governed by the nuclear Force 7

Disintegration of Uranium by Neutrons: a New

Type of Nuclear Reaction

Following up an observation of Curie and Savitch?,
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that isotopes of barium (Z = 58) are formed as a
consequence of the bombardment of uranium (Z = 92)
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Aren’t nuclei guantum objects governed by the nuclear Force 7

Disintegration of Uranium by Neutrons: a New
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The importance of fission for fundamental nuclear physics

ground state  saddle point ground state  saddle point

With shell effects
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Fission is a complete laboratory for studying nuclear dynamics over a broad range of
deformation under the influence of shell effects, correlations!

Many key fundamental nuclear properties have to be taken into account! -



The richness of fission observables
Formation:

Capture cross sections ground state  saddle point

Neutron Cross-Sections for Fission of Uranium and Plutonium
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The richness of fission observables

ground state  saddle point Barrier to well after scission:
Fission fragment yields

Formation:
Capture cross sections

Neutron Cross-Sections for Fission of Uranium and Plutonium
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The richness of fission observables

Formation:
Capture cross sections

> L. Mathieu

Ground-state to barrier :

Fission probability,

> L. Audoin (Poster)
» C. Berthelot (Poster)

 neutron capture cross sections
* Fission Barrier (Fission probability) - Gamma-ray Emission
* Fission Fragment Yields (A, (N,Z))

* Kinetic Energies

* Cummulative yields

ground state

* Neutron multiplicities

saddle point

Barrier to well after scission:
Fission fragment yields

» P. Morfouace
» J-E Ducret (Poster)
» D. Treasa (Poster)

Prompt neutrons & gammas

» V. Piau
» C. Michelagnoli
» G.Soum




The richness of fission observables

ground state  saddle point Barrier to well after scission:
Fission fragment yields

Formation:
Capture cross sections

> L. Mathieu

» P. Morfouace
» J-E Ducret (Poster)
» D. Treasa (Poster)

Ground-state to barrier :
Fission probability,

Prompt neutrons & gammas
> L. Audoin (Poster)

» C. Berthelot (Poster)

» V. Piau
» C. Michelagnoli
» G.Soum

* neutron capture cross sections * Neutron multiplicities When the system has a lot of energy !

* Fission Barrier (Fission probability) - Gamma-ray Emission
* Fission Fragment Yields (A, (N,Z)) < Cummulative yields
* Kinetic Energies

» Q. Fable (Poster)




The richness of fission observables

Barrier to well after scission:

Fission fragment yields
Apost, 238U(n,f), En=2MeV

Formation:
Capture cross sections

Neutron Cross-Sections for Fission of Uranium and Plutonium
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New opportunities have revived

the field of nuclear fission

* New experimental techniques to measure

Fission Fragments yields
(compared to spontaneous or n-induced fission )

* Heavy ion reaction induced fission
(fusion, transfer, inelastic excitation)

* Inverse kinematics with magnetic spectrometers

=> New Opportunities

* Range of fissioning systems
(A,Z, Excitation Energy domain)

* |sotopic Identification of fission Fragments (Aq,Zc)

ground state  saddle point

11



Heavy ions reactions fission studies

Studying « exotic » fissionning systems using heavy ion reactions
(changing the content in number of protons and neutrons)

* Fusion (A+B-> C) Neutron-induced S -
i urrogate reaction
* Transfert of particules (A + B ->C + D) reaction
@

* Electromagnetic excitation of Radioactive Beams (A+B->A*+B) . ‘

* Beta delayed fission
D X + y

S
(A+1)* %Y_decay

Fission ‘

<, ¢ B-delayed fission
+ transfer-induced

12



Decades of investigations
based on the mass of fission fragments
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Related to the challenge of measuring
the charge (Z) of fission fragments 13

Electrostatic repulsion



Fission under the inverse kinematics boost

Direct kinematics fission
Light beams + Actinide target — Fission almost at rest

Normal kinematics

(Unstable)

14



Fission under the inverse kinematics boost

Direct kinematics fission
Light beams + Actinide target — Fission almost at rest

Normal kinematics

(Unstable)

c.m.2
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Fission under the inverse kinematics boost

Atomic Charge (Z) identification

Direct kinematics fission Exemple with AE/E
Light beams + Actinide target — Fission almost at rest 20

- Heavy fragments

Very low recoil energy of
Fission Fragments (1cm/ns)
Limited identification capabilities
e Mass 2-4 amu
e Z<40
Experimental challenge to overcome

Normal kinematics
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Fission under the inverse kinematics boost

Direct kinematics fission

Light beams + Actinide target — Fission almost at rest

Normal kinematics

...
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Fission under the inverse kinematics boost

Atomic Charge (Z) identification

Direct kinematics fission Exemple with AE/E
Light beams + Actinide target - Fission almost at rest 207 ,
eav frazments « Verylow recoil energy of
Normal kinematics - — 18- yirae Fission Fragments (1cm/ns)
i e fragment S 16 ya 2 o Limited identification capabilities
iy ‘ 3 S ight fragments « Mass 2-4 amu
Py Energy — 0 Neutrons '-g E ” : « 7<40
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Fission under the inverse kinematics boost

Direct kinematics fission
Light beams + Actinide target - Fission

almost at rest

Normal kinematics
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« Boosted Fission Fragments (> 3cm/ns)
« Favored identification capabilities
o Mass 1/200 (with spectrometer)
o Complete Z distributions
« Kinematical Focussing
=> Improved detection efficiency
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Relativistic Fission in inverse kinematics at GSI

K.-H. Schmidt et al.

Actinide beam

Fission
Primary beam 238, 1A.GeV Secondary beam

Production target \ —

fragmentan%n)g ader AE  START / —hE- O—*“E 3
) M .

Fragmentation => cocktail beam of Radioactive lons of actinides

Electromagnetic excitation (A+B->A*+B) induced fission
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Relativistic Fission in inverse kinematics at GSI

K.-H. Schmidt et al.
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Relativistic Fission in inverse kinematics at GSI

K.-H. Schmidt et al.

Actinide beam

Fission

Primary beam 238, 1A.GeV Secondary beam
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Fragmentation => cocktail beam of Radioactive lons of actinides
Electromagnetic excitation (A+B->A*+B) induced fission
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Relativistic Fission in inverse kinematics at GSI
SOFIA @ GS|
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Fission in inverse kinematics at VAMOS/GANIL

Inverse Kinematic using beams of
238U around Coulomb Barrier

— Access to « exotic » fissionning
systems heavier than 238U
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@ 6 AMeV reaction %
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A, Z, E, angle




Fission in inverse kinematics at VAMOS/GANIL

Inverse Kinematic using beams of
238U around Coulomb Barrier

— Access to « exotic » fissionning
systems heavier than 238U

238 transfer
@ 6 AMeV reaction
12 !
target
recoil

15N

©12,13,14
C

SPIDER — PISTA:
Recoll
A, Z, E, angle

70 um Si AE

targetlike |
recoil |

Surrogate reactions
(transfer induced fission)
— Selection of the fissionning system
— Measurement of the excitation energy

12C target

The reconstruction of the binary reaction
gives kinematical information and the
identification of the fissioning system
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Fission in inverse kinematics at VAMOS/GANIL

C. Rodriguez. Tajes et al., PRC 89 (2014) 024614

Inverse Kinematic using beams of
238U around Coulomb Barrier

— Access to « exotic » fissionning
systems heavier than 238U
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The reconstruction of the binary reaction
also provides information on the fission

ission fragment

ission fragment

barrier

17



Fission in inverse kinematics at VAMOS/GANIL

Inverse Kinematic using beams of
238U around Coulomb Barrier

— Access to « exotic » fissionning
systems heavier than 238U
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VAMOS Magnetic Spectrometer
—> Direct and Complete isotopic fission
fragment yields
—> Precise center-of-mass fission
fragment velocities isotopically (due to
Coulomb barrier energies)
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Fission in inverse kinematics at VAMOS/GANIL

Inverse Kinematic using beams of
238U around Coulomb Barrier

— Access to « exotic » fissionning

systems heavier than 238U
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VAMOS Magnetic Spectrometer
—> Direct and Complete isotopic fission
fragment yields
—> Precise center-of-mass fission
fragment velocities isotopically (due to
Coulomb barrier energies)
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Fission in inverse kinematics at VAMOS/GANIL

Inverse Kinematic using beams of
238U around Coulomb Barrier

— Access to « exotic » fissionning
systems heavier than 238U

fission
238 transfer
@ 6 AMeV reaction
12C !
target )
*Np (7.5 MeV)
recoil

VAMOS Magnetic Spectrometer
—> Direct and Complete isotopic fission
fragment yields
—> Precise center-of-mass fission
fragment velocities isotopically (due to
Coulomb barrier energies)
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Normalised Yield

A set of revisited and new observables
/ and N distributions

neutrons
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Fragment Z
FS (<E%)

250Cf (46 MeV)
=== 244Cm (23 MeV)
= 240Py (10.7 MeV)
= 239Np (7.5 MeV)
— 2381 (7.4 MeV)

The effect of the heavy group lasts
until very high excitation energy.

At ~46 MeV the distribution is not
yet fully LD.

Even odd effect : pairing of nucleons
in fission and damping with the
excitation energy.

A L A A s l : -
50 60 70 80 $ 90 100
Fragment N

The measured neutron distribution
s affected by post-scission
evaporation.

D. Ramos et al. (2019)
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Normalised Yield

Normalised Yield

A set of revisited and new observables
Fragments N excess (<N>/Z)

D. Ramos et al. (2019)
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neutrons

Fragment N

Fragment Z
Reveals fine structural effects otherwise unnoticed

N=82 (~spherical) and N=88 (deformed / Octupolar) N




Exploring further the fission landscape

© particle-induced, SF
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Exploring further the fission landscape

© particle-induced, SF
x e.m.-induced

<, B-delayed fission
+ transfer—-induced

| 266 |

>

236U

Actinides N/Z~ 1.5

Identified shell effects
(z=52, 56, N=82,88)
Competition between modes
Open questions on the pairing and
the damping of shell effects with E*
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Exploring further the fission landscape

© particle-induced, SF

<, B-delayed fission
+ transfer—induced

Pre-Actinides N/Z~ 1.2

Unexpected Assymetric fission
in 18°Hg (Andreiev et al PRL (2010))
=> New stabilizing effects

at Z ~ 36 deformed (octupole)

configuration
Ongoing programs :

- Fusion Fission GANIL / JAEA

- Electromagnetic probe @ GSI ' S 2e8e
%ﬁm /e
74 N ]

Actinides N/Z~ 1.5

Identified shell effects
Z=82 (z=52, 56, N=82,88)
Competition between modes
Open questions on the pairing and
the damping of shell effects with E*

Building a coherent
picture across the
landscape .



Fission : A long history and rich perspectives

After 85 years of studies, fission remains a challenging topic 287, 297}, 75|
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Fission : A long history and rich perspectives

After 85 years of studies, fission remains a challenging topic 287, 297}, ch 75|
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* In the last decade, experimental developments opened new
paths to probe the fission process for a wide range of
systems (in terms of content (N/Z) and excitation energy E*) o particieinduces, s

<, ¢ B-delayed fission

* Present and future exclusive measurements (A,Z,E*) bring * transfer-induced FrR%f
new constrains to models to explore the different underlying o e B
dynamical and structural mechanisms that drive the fission ——<>3
process towards a coherent picture of the fission process ¢
across the fission nuclear landscape.




Fission : A long history and rich perspectives

After 85 years of studies, fission remains a challenging topic 287, 297}, ch 75|

* In the last decade, experimental developments opened new
paths to probe the fission process for a wide range of

systems (in terms of content (N/Z) and excitation energy E*) o particieinduces, s P
o, * B-delayed fission
* Present and future exclusive measurements (A,Z,E*) bring iaster mdcad FrRaﬁ%
new constrains to models to explore the different underlying o e B
dynamical and structural mechanisms that drive the fission s
process towards a coherent picture of the fission process M . E;EIS‘:E
across the fission nuclear landscape. maa

e Contributions to nuclear data needs and evaluation

* Beyond the fission \éields (mostly shown today), a large
number of observables (Kinetic Energies, neutron
multiplicities, prompt gamma-ray spectra) plays a key role in
gaining a deeper understanding of the process.
=> V. Piau, C. Michelagnoli

* Ongoing intense theoretical developments aiming at a
microscopic description of the fission process
=> D. Regnier

Thank you for your attention |
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