

Theory of nuclear fission: a guided tour through 80 years of research

David Regnier^{1,2}

- 1. CEA, DAM, DIF, 91297 Arpajon, France
- 2. Université Paris-Saclay, CEA, LMCE, 91680 Bruyère-le-Châtel, France

Fission of an atomic nuclei

A theoretical challenge:

- Quantum many-body problem: more than 10^{200} Bytes to store the wavefunction
- **Dynamical process** with a large number of possible reaction outcomes

Reducing the theoretical difficulty

- σ_f : 'One channel' reaction theory
- Y(A, Z, KE...): Scission point models, many-body dynamics (this talk)
- $u, \chi_{
 u}, M_{\gamma}, \chi_{
 u}$: Statistical deexcitation models V. Piau (talk)
- **D. Regnier**, 26ème Congrès Général de la SFP, July 3-7 2023

Different theoretical approaches for different needs

D. Regnier, 26ème Congrès Général de la SFP, July 3-7 2023

Table of contents

I. Introduction

II. Tour of theoretical approaches

III. Perspectives

Theoretical predictions of the fragments properties

	For	mation	of Pr	rimary	Fissic	on Fra	gmen	ts
1940	1950	1960	1970	1980	1990	2000	2010	2020
Liquid drop picture		Explanation of asymmetric Y(A) from shell effects		Y(A) from 2D Langevin dynam		Y(A) from nics TDGCM		
			Y(A) from point n	scission odel		Y(Z) from 5D Brownian motion		
			Axially- and reflection-symmetr TDHF dynamics			Symmetry-unrestricted TDHF, TDBCS, TDHF dynamics		
N. Schunck	e <i>t al.</i> Pro	og. Part. Nu	cl. Phys.	125 (2022	2)			

D. Regnier, 26ème Congrès Général de la SFP, July 3-7 2023

Scission point models

• Statistical distribution of states close to scission

Fast calculations
 High dependency to the phase-space considered

Langevin dynamics

- Classical statistical approach
- Shape degrees of freedom coupled to a thermal bath

Particle evaporation (neutron, gamma rays)
 No information on internal fragments characteristics (e.g. spins)

Time dependent mean-field approaches

2014: Fission of ²⁵⁸Fm, ²⁶⁴Fm (no pairing)
C. Simenel *et al.*, PRC 89 (2014)
2015: ²⁵⁸Fm with pairing (TDBCS)
G. Scamps *et al.*, PRC 92 (2015)
2016: ²⁴⁰Pu with pairing (full TDHFB)
A. Bulgac *et al.*, PRL 11 (2016)
2021-2022: Fragments spins
A. Bulgac *et al.*, PRL 126 (2021)
A. Bulgac *et al.*, PRL 128 (2022)

Dynamics through scission, good prediction of the energy balance
 No fragments mass yields (lack one-body fluctuations)

Fragments spin

- What is the distribution of primary fragments spins ?
- How does it vary with the mass/charge of the fragments ?
- What mechanisms produce these spins ?

Crucial input for the prompt gamma emission (cf. V. Piau (talk))

Two recent experimental inputs

- J. N. Wilson *et al.* Nature **590** (2021)
- M. Travar et al. Phys. Let. B 817 (2021)

Insight from time dependent mean-field

Limitations of the time dependent mean-field picture

units (a) sct P(Z) (arb. aef 5540455060 Ζ Charge distribution in one fragment.

Too sharp charge yields

Three TDBCS simulations of 258 Fm fission G. Scamps *et al.*, PRC **92** (2015)

No collective tunneling

Statistical ensemble of mean-field like trajectories

Fragment kinetic energy distribution (fluctuations + energetic) \times No tunnelling through fission barrier (no quantum interferences) 260

Quantum mixing of mean-field states

- Set of parameterized states
- Dynamics in a collective coordinates space

Quantum tunnelling through fission barrier
 Dynamics through scission (diabatic aspect)

Overview

Single reference	Semi-classical ensemble	Multi-configuration		
$ \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	$P_{I}(p)$	$ \phi_{HFB}(\theta_A, \theta_B)\rangle$		
 Diabatic dynamics Misses collective fluctuations Breaks symmetries No collective tunnelling 	 More collective fluctuations (standard deviation of 1-body observables) Low cost, parallel algorithms Misses quantum 	 Quantum fluctuations, probability distribution Difficulty to get both fluctuations and diabatic motion High cost, parallel algorithms in some cases 		
2	interferences	Issue with EDF kernels		

One method \simeq one type of observables

Table of contents

I. Introduction

II. Tour of theoretical approaches

III. Perspectives

Moore's law in nuclear theory

Toward richer trial wavefunctions

Quantum mixing TD mean field states

 $|\psi(t)
angle = \int_q f(q,t) |\phi(q,t)
angle$

Neural network wave functions

 $\psi(r_1\sigma_1,\cdots r_N\sigma_N)=\mathrm{NN}(r_1\sigma_1,\cdots r_N\sigma_N)$

Ultimate goal: bridging the steps of the fission process

Observables of interest

- Prompt emission of exotic fissioning systems
- Impact of the input channel on fission yields

CRAIYON: 'Atomic nucleus in the quantum realm'

Thank you for your attention !