Activation and spectroscopy of mass and charge selected ions

Alexandre Giuliani
Synchrotron SOLEIL & INRAE
Motivations

• Profit from the capacity of modern ionization sources to place virtually anything in the gas phase.
Motivations

• Profit from the capacity of modern ionization sources to place virtually anything in the gas phase.
• Spectroscopy on charged species: is it relevant?
Motivations

• Profit from the capacity of modern ionization sources to place virtually anything in the gas phase.
• Spectroscopy on charged species: is it relevant?

The isoelectric point (pI), is the pH at which a particular molecule carries no net electrical charge.

Figure 1. Number of proteins in the UniProtKB/Swiss-Prot database versus pI value, retrieved with the TagIdent tool (http://www.expasy.ch/tools/tagident.html) in June 2010.
Motivations

• Profit from the capacity of modern ionization sources to place virtually anything in the gas phase.
• Spectroscopy on charged species: is it relevant?

The isoelectric point (pI), is the pH at which a particular molecule carries no net electrical charge.

Most of the proteins are charged in solutions
→ Nucleic acids, fatty acids ...
Motivations

• Profit from the capacity of modern ionization sources to place virtually anything in the gas phase.
• Spectroscopy on ions

• Control over the target:
 - mass and charge selected species
Motivations

ESI-MS of PEG 4100

Intensity

0 1000 2000

m/z

500 1000 1500 2000

+4
+3
+5
Motivations

ESI-MS of PEG 4100

ESI-MS of PDMS. The arrow indicates the monoisotopic ion of \([\text{PDMS}_{25}^{\text{+Na}}]^+\)
Motivations

ESI-MS of PEG 4100

ESI-MS of PDMS. The arrow indicates the monoisotopic ion of [PDMS$_{25}$+Na]$^+$

ESI-MS of a protein interacting with its ligand. Mixture of stoichiometries (1•0 à 1•8) and charge states (6+ à 8+).
Experimental setup

Experimental setup
SRMS2 @ DESIRS

DESIRS beamline, SOLEIL
http://www.synchrotron-soleil.fr/Recherche/LignesLumiere/DESRS

Action spectroscopy

A. Milosavljević, C. Nicolas, J. Lemaire, C. Dehon, R. Thissen, J.-M. Bizau, M. Réfrégiers, L. Nahon and A. Giuliani,
Action spectroscopy

A. Milosavljević, C. Nicolas, J. Lemaire, C. Dehon, R. Thissen, J.-M. Bizau, M. Réfrégiers, L. Nahon and A. Giuliani,
Action spectroscopy

Precursor selection

A. Milosavljević, C. Nicolas, J. Lemaire, C. Dehon, R. Thissen, J.-M. Bizau, M. Réfrégiers, L. Nahon and A. Giuliani,
Action spectroscopy

Precursor selection

Normalized ion abundance of $[M+nH]^{(n+1)+}$

A. Milosavljević, C. Nicolas, J. Lemaire, C. Dehon, R. Thissen, J.-M. Bizau, M. Réfrégiers, L. Nahon and A. Giuliani,
Action spectroscopy

A. Milosavljević, C. Nicolas, J. Lemaire, C. Dehon, R. Thissen, J.-M. Bizau, M. Réfrégiers, L. Nahon and A. Giuliani,
Outline

• VUV activation of oligosaccharides

• Serine dimer
Outline

• VUV activation of oligosaccharides

• Serine dimer
Nomenclature from Domon et Costello (1988)
Nomenclature from Domon et Costello (1988)
Nomenclature from Domon et Costello (1988)
Limitation of collision activation

DP3Me3

Z₂ or C₂
Limitation of collision activation

DP3Me3

![Chemical structure diagram]

Water loss

Methanol loss

Relative Abundance

Z₂ or C₂
Limitation of collision activation
Limitation of collision activation

DP3Me3

\[\text{CH}_3\text{O} - \text{C} \rightarrow \text{OCH}_3 \]

\[\text{O} \rightarrow \text{O} \cdot \text{OCH}_3 \]

\[\text{OH} \rightarrow \text{OH} \cdot \text{OH} \]

Water loss

Methanol loss

X, Y, Z fragments shift by 2 Da

Limitation of collision activation
Limitation of collision activation

- Difficulty to achieve a complete labelling
- Cost!
- Double fragmentation

X, Y, Z fragments shift by 2 Da
Limitation of collision activation

- Difficulty to achieve a complete labelling
- Cost!
- Double fragmentation

X, Y, Z fragments shift by 2 Da

Water loss
Methanol loss
Limitation of collision activation

DP3Me3

Before labelling by 18O

After labelling by 18O
Limitation of collision activation

Before labelling by 18O

After labelling by 18O

2Da shift
No shift
Limitation of collision activation

Before labelling by 18O

After labelling by 18O

DP3Me3
VUV activation vs CID

DP3Me3

Neutral loss

Neutral loss

VUV activation vs CID
VUV activation vs CID

- More intracyclic fragments
- No neutral losses
- No double fragmentation

Interfering peaks from the beam
VUV activation vs CID

- More intracyclic fragments
- No neutral losses
- No double fragmentation

Interfering peaks from the beam

Neutral loss

Neutral loss

• More intracyclic fragments
• No neutral losses
• No double fragmentation

Interfering peaks from the beam
"RULES":

- Systematic series of fragments (X, Y, Z) from reducing end and (A, B) from non-reducing end
 - More intracyclic fragments
 - No neutral losses
 - No double fragmentation

Interfering peaks from the beam

Neutral loss

Interfering peaks from the beam
DP5Me3 sequencing

DP5Me3

\[\text{C=O} \quad \text{O} \quad \text{C=O} \quad \text{O} \quad \text{C=O} \quad \text{O} \quad \text{C=O} \quad \text{O} \quad \text{C=O} \quad \text{O} \]

\[\text{HO} \quad \text{O} \quad \text{C=O} \quad \text{O} \quad \text{C=O} \quad \text{O} \quad \text{C=O} \quad \text{O} \quad \text{C=O} \quad \text{O} \]

\[\text{Me} \quad \text{Me} \quad \text{Me} \quad \text{Me} \]

\[\text{SY0487} \]

\[\text{C:\Users...DATA_BRUTE\SY0487} \]

\[\text{23/06/2012 23:19:31} \]

\[\text{F38 HGB69 945 VUVPD 18eV 3000ms 4min} \]

\[\text{SY0487} \]

\[\# \]

\[\text{1-23} \]

\[\text{RT: 0,00-3,91} \]

\[\text{AV: 23} \]

\[\text{NL: 1,07E3} \]

\[\text{T: ITMS + p ESI Full ms2 945,20@cid0,00 [260,00-1000,00]} \]

\[\text{300 350 400 450 500 550 600 650 700 750 800 850 900} \]

\[\text{x10} \quad \text{x20} \quad \text{x50} \quad \text{x100} \]

\[\text{m/z} \]

\[\text{945,2} \]

\[\text{Relative Abundance} \]

\[0 \quad 10 \quad 20 \quad 30 \quad 40 \quad 50 \quad 60 \quad 70 \quad 80 \quad 90 \quad 100 \]

\[\text{300 350 400 450 500 550 600 650 700 750 800 850 900} \]

\[\text{Relative Abundance} \]

\[0 \quad 10 \quad 20 \quad 30 \quad 40 \quad 50 \quad 60 \quad 70 \quad 80 \quad 90 \quad 100 \]

\[\text{m/z} \]

\[945,2 \]

\[\text{313,0} \quad \text{335,0} \quad \text{389,2} \quad \text{407,2} \quad \text{435,2} \quad \text{443,2} \quad \text{479,0} \quad \text{500,9} \quad \text{519,2} \quad \text{533,2} \quad \text{561,2} \quad \text{594,9} \quad \text{583,2} \quad \text{625,2} \quad \text{644,9} \quad \text{660,9} \quad \text{737,2} \quad \text{725,2} \quad \text{801,1} \quad \text{814,1} \quad \text{826,8} \quad \text{855,1} \quad \text{885,2} \]

\[\text{x10} \quad \text{x20} \quad \text{x50} \quad \text{x100} \]
DP5Me3 sequencing
DP5Me3 sequencing
DP5Me3 sequencing
DP5Me3 sequencing

DP5Me3

DP5Me3 sequencing
DP5Me3 sequencing

DP5Me3

![Diagram of DP5Me3 structure]

Relative Abundance vs. m/z

- B3: Δ -176
- B4: Δ -208

Peaks at
- m/z 285.0
- m/z 335.0
- m/z 313.0
- m/z 371.2
- m/z 389.2
- m/z 407.2
- m/z 435.2
- m/z 443.2
- m/z 479.0
- m/z 500.9
- m/z 519.2
- m/z 533.2
- m/z 561.2
- m/z 594.9
- m/z 597.2
- m/z 625.2
- m/z 644.9
- m/z 660.9
- m/z 737.2
- m/z 801.1
- m/z 814.1
- m/z 826.8
- m/z 855.1
- m/z 885.2

RT: 0.00-3.91
AV: 23
NL: 1.07E3

T: ITMS + p ESI Full ms2 945.20@cid0.00 [260.00-1000.00]
DP5Me3 sequencing
DP5Me3 sequencing

DP5Me3

DP5Me3 +
DP5Me3 sequencing

[Diagram of DP5Me3 sequencing with molecular structures and mass spectra]
Liquid chromatography coupling

Red alga

Digestion par
une agarase +
une porphyranase

SEC

ESI Ion Trap

+1Me
Liquid chromatography coupling

Digestion par une agarase et une porphyranase

ESI Ion Trap

Intracluster bond formation

• VUV activation of ligosaccharides

• Intracluster bond formation: the case of serine dimer
LE-CID of protonated serine dimer

→ Cluster evaporation
→ Fragments of serine
× Peptide bond formation expected at m/z 193
Intracluster bond formation was never observed using LE-CID.

- Heating of the cluster leading to statistical products (evaporation more likely than ICBF)

Ser+SerH⁺

H₂O release

CO₂ release

M06-2X / 6-31++G(d,p) molecular dynamics
Intracluster bond formation

\[\text{Serine} + \text{Serine} + \text{H}^+ \rightarrow \text{diserine} + \text{H}_2\text{O} \]

- Excited states dynamics which can possible results in different, non statistical products
 → ICBF has been reported at 157 nm irradiation (JACS 2011, 133, 15834)

- Ability to deposit a well defined amount of energy into the system

- Tunable source: identify the excited states involved
LE-CID versus Photon activation

ICBF region
Peptide bond formation

→ m/z 193 low abundant (<1%) below 7 eV
→ PBF is present at higher energy
→ PBF is present at higher energy (above 10 eV)
Fragmentation of diserine is a two steps process:
- either PBF followed by fragmentation
- or fragmentation followed by bond formation
Peptide bond formation

PBF sterically hindered

Peptide bond formation

- States \(S_2, S_3, S_4, S_5 \) and \(S_{12} \) relaxes into stable minima that could further evolve towards PBF.

- PBF in the ground state \(S_0 \) implies an energetic barrier of 2.48 eV, compared to 0.5–1.6 eV from the excited states.

Conclusions

- VUV activation of oligosaccharides
 - Better suited than CID
 - Brilliance of SR makes it compatible with LC
- Intracluster bond formation
 - Evidence for peptide bond within a cluster
Acknowledgements

SynchrotronSOLEIL
Laurent Nahon
Aleksandar Milosaljevic
Matthieu Réfrégiers

Bar-Ilan University, Israel
Ori Licht
Yoni Toker

Normandie Univ, Caen
Patrick Rousseau

Universidad Autónoma de Madrid, Spain
Darío Barreiro-Lage
Lara Martínez-Fernández
Sergio Díaz-Tendero

LAMBE, Evry
William Buchmann

INRAE
Hélène Rogneau
David Ropartz
Francis Canon

Thank you for your attention