Fission properties of N=100 isotones ¹⁷⁶Os, ¹⁷⁷Ir and ¹⁷⁹Au

Deby Treasa K. M.¹, I. Tsekhanovich¹, A. N. Andreyev^{2,3}, K. Nishio³, S. Czajkowski¹, K. Hirose³, H. Makii³, P. Marini¹, L. Mathieu¹, R. Orlandi¹, F. A. Ivanyuk⁴, K. Mazurek⁵, and S. Chiba⁶

¹Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, Gradignan, F-33170, France ²School of Physics, Engineering and Technology, University of York, YO10 5DD, York, United Kingdom ³Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki, 319-1195, Tokai, Japan ⁴Institute for Nuclear Research, Kiev, 03028, Ukraine ⁵Nuclear Physics Polish Academy of Sciences, Krakow, PL-31342, Poland ⁶Tokyo Institute of Technology, Tokyo, 152-6550, Japan

Introduction

Nuclear fission is a complex process where a single nucleus splits into two or more heavy nuclei, releasing a large amount of energy but also offering a rich laboratory for research on nuclear properties. Driven by its variety of applications, fission studies are traditionally made in the actinide region, i.e., in the isospin range $N/Z \sim 1.48 - 1.58$. The structure and composition of the **fission fragment mass distribution** and its dependence on **isospin** is crucial in accounting for the creation of $110 \le A \le 170$ in neutron star mergers.

Assessing effect of experimental resolution:

GEF simulation [5].

Problem: Projection of fission properties to nuclei matter at high isospin values. **Solution:** Investigation of fission properties of nuclear matter with **low** isospin values, as function of Z and N.

Discovery of the asymmetric fission of ¹⁸⁰Hg [3] in 2010 has opened a new region for fission studies, drawing worldwide attention from both theory [4] and experiment. This is because nuclei in the ¹⁸⁰Hg region :

- are *very neutron-deficient* \rightarrow good candidates to address the isospin issue;
- have an *asymmetric FFMD*, which is *not linked to shell effects in final fragments*.

|--|

Possible experimental techniques	Advantages	Disadvantages
Beta-delayed fission (βDF) :	Cold fission	Very limited range of nuclei

Lower row: figures depict the derivative curves obtained from the data in the upper panel. (a-d): ^{176}Os FFMD obtained at different E*. (f-i): FFMDs from (a-d), normalized to 200%, in comparison with two Langevin calculations:[6,7] Main Results ✓ High statistics data as $f(E^*)$

 $f'(x) = -f(x) * \frac{x - \mu}{\sigma^2},$ $f(x) = H * exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right).$

- ✓ Good agreement with Langevin theoretical calculation.
- \checkmark Fission mode extraction:
 - > 2 main fission modes (1S, 1A)
 - > Asymmetric mode driftresolving power and E*.
- ✓ Non Gaussian FFMD's : mixture of symmetric and asymmetric fission.
- ✓ Fission mode : Similar average TKE
- *Consequence*: Similar fission
- configuration (unlike actinides)
- ✓ Origin of asymmetric mode:

Average S-mode weight as a function of E_{cm}/E_{b} for the studied reactions. The point $E_{cm}/E_{b}=0.94$ *is from* [8].

 $E_{c.m.} / E_{B}$

> $A_L \approx 80$, $A_H \approx A_{CN}$ -80 ⁸⁰Se (Z=34, N= 46) octupolly deformed...

Acknowledgement

The authors acknowledge support from French Ministry for higher Education, Research and Innovation. Support from the JAEA tandem accelerator team is greatly acknowledged.

● ¹⁷⁶Os

¹⁷⁸Pt

□ ¹⁷⁹Au

1.2

 Θ^{177} lr

References

[1] S. Goriely *Eur. Phys. J. A* **51**, 22 (2015) [2]A. Andreyev et. al., Rep. Prog. Phys. 81, 016301 (2018). [3] A. Andreyev et. al., Phys. Rev. Lett. 105, 252502

[4] G. Scamps et. al., Nature 564 382 (2018).

[5] The GEF code from

https://www.lp2ib.in2p3.fr/nucleaire/nex/gef/ [6] P. N. Nadtochy et. al., Phys. Rev. C 85, 064619 (2012). [7] C. Ishizuka et. al., Phys. Rev. C 96, 064616 (2017). [8] B. M. A. Swinton-Bland et. al. Phys.. Lett. B 837 (2023) 137655