Conformer-selective Photodissociation of Nanohydrated Biomolecules : Structure – Photophysics Relationship

Gilles Grégoire

Institute of Molecular Sciences, Orsay (ISMO) CNRS – Paris-Saclay University

CINIS

MC 13 – Congrès Général des 150 ans de la SFP – Paris 2023

Tryptophan Fluorescent Properties

Effect of tryptophan environment on the emission spectra : Folding / Unfolding of proteins

Principes of Fluorescence Spectroscopy, J. Lakowicz, Springer

Hydration effect on excited state lifetime

Structure of Annexin V in the absence (top) and presence (bottom) of Ca2+.

✓ Buried tryptophan residues seem to display shorter lifetimes !

✓ The longer lifetimes of exposed tryptophan residues have been puzzling because exposure to water is expected to result in shorter lifetimes.

✓ It is now known that peptide bonds and charged residues can quench tryptophan

MC 13 – Congrès Général des 150 ans de la SFP – Paris 2023

Trp Fluorescent Properties

Quenching by the ammonium group

- At neutral pH : 2 time constants (0.5 and 3 ns)
- Shortening of excited state lifetime at low PH
- At high PH : the quantum yield and mean lifetime increase approximately threefold.

CINIS

The rotamer model to explain the multi exponential time decay

Rotational isomers of tryptophan.

- The rotamers on the left is thought to be responsible for the 0.5 ns decay time.
- 18-Crown-ether prevents quenching by the ammonium group.

The seminal study of Boyarkin and Rizzo (2006) Cryogenic ion spectroscopy of (hydrated) TrpH⁺ at the band origin

> Broadened excitation spectrum of TrpH⁺ at band origin : short excited lifetime (fs)

> Sharp vibronic transitions for TrpH⁺-(H_2O)₂ : Unexpected solvation effect !!

Orsay Experimental Setup Dual Cold Ion Trap

100 -

universite

PARIS-SACLAY

MC 13 – Congrès Général des 150 ans de la SFP – Paris 2023

Reactivity and Dynamics of Photo-Induced Processes in Protonated Molecules

Combine UV laser spectroscopy with mass spectrometry
 ➢ Control of the entrance channel : mass-selection m/z
 ➢ Control of the excess energy : photon ; tunable laser
 ➢ Control of the exit channel : detection of all fragmentation channels

Cold Ions (10-20 K) ➤ Well resolved spectroscopy ➤ Conformer selectivity ➤ Direct comparison with QC calculations

niver

PARIS-SACI

UV Photo Dissociation Spectroscopy (UV-PD)

MC 13 – Congrès Général des 150 ans de la SFP – Paris 2023

UV Photodissociation spectroscopy of cold TrpH⁺

Main fragmentation channel NH_3 loss : m/z 188

Secondary fragmentation m/z 188 \rightarrow m/z 146 NH₃ and CH₂CO loss : m/z 146

CID like fragmentation : Internal conversion

Broadened electronic spectroscopy Sub picosecond $\pi\pi^*$ excited state lifetime

Boyarkin et al. JACS, 128, 2815 (2006)

MC 13 – Congrès Général des 150 ans de la SFP – Paris 2023

CNIS

pump-probe photodissociation spectroscopy at the band origin

Pump only

MC 13 – Congrès Général des 150 ans de la SFP – Paris 2023

pump-probe photodissociation spectroscopy at the band origin

Pump only

Pump + 650 nm

NH₃ loss (from an excited state)

MC 13 – Congrès Général des 150 ans de la SFP – Paris 2023

Barrierless Excited-State Proton Transfer (ESPT) at the band origin (284 nm)

Gregoire et al. JACS, 129, 6223 (2007)

• S₀ and S_n geometry optimizations performed at CC2-SCS / aug-cc-pVDZ level.

• Excited state optimization of the ${}^{1}\pi\pi^{*}$ states (L_b and L_a) leads to barrierless ESPT (fs time scale)

> 40 ps : Lifetime of the ESPT structure

H⁺ transfer to indole (Å)

Conclusions TrpH⁺

TrpH⁺ photodynamics not as simple as supposed :

> Internal conversion but not from the locally excited $\pi\pi^*$ state

- > Barrierless Excited State Proton Transfer : fs lifetime of $\pi\pi^*$ state
- Lifetime of ESPT form : tens of ps (with about 0.8 of excess energy)

> Specific photofragments as a function of the probe wavelength:

Direct dissociation in the excited states

The deactivation processes in the excited state are not straightforward to understand

CNrs

TrpH⁺-(H₂O)_n

Home-made octopole trap : Liquid Nitrogen cooling

Mass Selection : Quadrupole mass filter

- Temperature below 200 K
- Trapping time (1-10 ms)

UV Photodissociation of TrpH⁺-H₂O

• m/z 188 : H_2O and NH_3 loss (IC)

CINIC

UV Photodissociation of TrpH⁺-H₂O

• m/z 188 : H_2O and NH_3 loss (IC)

CINIS

Two different vibronic spectra :

- Sharp transitions observed on m/z 131
- Broadened absorption band on m/z 188
- Sharp transitions further to the blue on m/z 188

> How many conformers ?

IR-UV dip spectroscopy

- 1. Set the UV on specific vibronic transition
- 2. Scan the IR laser before the UV
- 3. Record the IR dip spectrum

MC 13 – Congrès Général des 150 ans de la SFP – Paris 2023

- Bands A/C/D belong to the same conformer
- Fragmentation branching ratio change within 300 cm⁻¹

Conformer assignment

DFT : B3LYP-D3 / cc-pVTZ

Picosecond pump-probe photodissociation spectroscopy

ps laser : Spectral resolution too low (10 cm⁻¹) to observe vibronic transitions but still able to discriminate band A (black, m/z 131) and band B (red, m/z 188)

Picosecond pump-probe photodissociation spectroscopy

ps laser : Spectral resolution too low (10 cm⁻¹) to observe vibronic transitions but still able to discriminate band A (black, m/z 131) and band B (red, m/z 188)

ns lifetime : Consistent with sharp vibronic spectrum

te

inivers

PARIS-SACLAY

Picosecond pump-probe photodissociation spectroscopy

ps laser : Spectral resolution too low (10 cm⁻¹) to observe vibronic transitions but still able to discriminate band A (black, m/z 131) and band B (red, m/z 188)

MC 13 – Congrès Général de 150 ans de la SFP – Paris 2023

TrpH⁺-H₂O : conformer-specific photodynamics

CONF A : sharp vibronic transitions Water inserted between the indole and NH₃⁺

ESPT blocked, ns lifetime of the $\pi\pi$ * state

0₀⁰ (calc) = 4,36 eV vs 4,31 ev (exp)

CINIS

CC2-SCS / aug-cc-pVDZ level Opt + freq (S₀ and $\pi\pi^*$ states)

CONF B: broadened excitation spectrum NH₃⁺ pointing toward indole

Prone for ESPT

Barrierless ESPT

MC 13 – Congrès Général de 150 ans de la SFP – Paris 2023

Dopamine Water Clusters DH⁺-(H₂O)_{n=0-3}

> $DH^+-(H_2O)_{n=0-2}$: Broadened excitation spectrum

Dopamine Water Clusters DH⁺-(H₂O)_{n=0-3}

> $DH^+-(H_2O)_{n=0-2}$: Broadened excitation spectrum

MC 13 – Congrès Général de 150 ans de la SFP – Paris 2023

CNIS

DH⁺-(H₂O)₃ : 2 conformers

IR-UV dip spectroscopy + B3LYP-D3/cc-pVTZ calculations

✓ Conf A : G1-1 : cyclic water cluster, prevent NH₃⁺ - catechol ring interaction
 ✓ Conf B : G1-2 : still one NH (NH₃⁺) pointing towards catechol ring

DH⁺-(H₂O)₃ : conformer-specific photodynamics

CC2-SCS / aug-cc-pVDZ level Opt + freq (S₀ and $\pi\pi^*$ states)

Conformer A Well-resolved FC spectrum

Conformer B Small energy barrier for ESPT

universitė

PARIS-SACLAY

Conclusions

conformer-selective photodynamics of hydrated biomolecules

TrpH⁺-(H₂O)_n ESPT blocked by a single water molecule

ChemPhysChem 2023

CINIS

 $DH^+-(H_2O)_n$ ESPT blocked in $DH^+-(H_2O)_3$ clusters

PCCP 2022 & JCP 2021 Editor Choice

Showcasing collaborative research within the frame of the Tokyo Tech World Research Hub Initiative, from the Group of Prof. Masaaki Fujil and Prof. Shun-Ichi Ishiuchi, Tokyo Institut of Technology, Japan and Dr Gilles Grégoire, Institut des Sciences Moléculaires d'Orsay, France.

Excited state dynamics of protonated dopamine: hydration and conformation effects

Cryogenic ion IR/UV spectroscopy has been used to unravel the complex photodynamics of micro solvated protonated dopamine. Intramolecular excited state proton transfer, triggered by electronic exotation of dopamine, is impeded by complexation with three water molecules.

ROYAL SOCIETY

OF CHEMISTRY

rsc.li/pccp

MC 13 – Congrès Général de 150 ans de la SFP – Paris 2023

Acknowledgements

Orsay Team : Michel Broquier, Satchin Soorkia

Franco Molina (PhD student), Jordan Dezalay (PhD 2022, MCF PIIM)

> Tokyo Tech Team : Keisuke Hirata, Pr. Shun-ichi Ishuichi and Pr. Masaaki Fujii

Master students : Jun-ichi Tabata, Ken-Ichi Kasai

EEE Université Paris-Saclay (ADI PhD grant)
JSPS Core-to-Core program, WHR Initiative @ TokyoTech

Thank you for your attention !!

In the Gas Phase : Excited state lifetime of « hot » TrpH⁺ @ 266 nm fs pump-probe photodissociation (2005)

PARIS-SACLAY

MC 13 – Congrès Général des 150 ans de la SFP – Paris 2023

Effect of the probe wavelength

> Fragm. branching ratio changes with the probe wavelength:

- \rightarrow @ 650 nm : direct NH₃ loss (from an excited state)
- \rightarrow @ 450 nm : C_{α}-C_{β} bond cleavage

Access to excited states of the ESPT structure

 $S_4 : + 2.7 eV$ (460 nm) n(O) – π*

CNTS

International Symposium, Tokyo Tech, Sept 29th 2022