

Phase Separation mechanisms in an Acidic Biphasic Solution

Gautier Meyer¹, Jean-François Dufrêche², Isabelle Billard³ and <u>Marie Plazanet¹</u>

¹LIPhy, CNRS and Univ. Grenoble-Alpes, Grenoble

²Institut de Chimie Séparative, Marcoule

³LEPMI, CNRS and Univ. Grenoble-Alpes, Grenoble

MC13

Effets d'environnement et de solvatation sur les processus moléculaires

Phase Separation mechanisms in an Acidic Biphasic Solution

Université Grenoble Alpes

Metal recycling

hej-support.org

leaching with strong acids... mixture of H₂O, Ni(II), Cu(II), Ln(III), Fe(III), Cr(VI), Pt(IV), SO₄²⁻, Cl⁻, NO₃⁻, F⁻...

Liquid-liquid extraction

-organic solvents (toluene, hexane....) -extractants (TBP, DEHBA...)

Can we use less toxic solvents ? Aqueous biphasic solutions, DES, IL....

Aqueous Biphasic Systems (ABS) for liquidliquid extraction

Aqueous Biphasic Systems (ABS) for liquidliquid extraction

Acidic ABS : $[P_{4,4,4,14}CI] / HCI / H_2O$

Matthieu Gras, ... Joao Coutinho & Isabelle Billard, Angew. Chem. Int. Ed., 57 (2018) 1563.

Acid rich

- Thermomorphic, acidic
- Low Critical Solution Temperature (LCST) : phase separation upon temperature rise
- ABS in presence of HCl or NaCl

Acidic ABS : $[P_{4,4,4,14}CI] / HCI / H_2O$

- Phase separation mechanisms vs T and [ions] ?
 - IL structural organisation
 - behaviour of free ions
- Liquid-liquid interface

Structural investigation : SANS (Small Angle Neutron Scattering)

 $I(Q) \sim P(Q).S(Q)$

P(Q) : form factor (shape of the objects) S(Q) : structure factor (organization)

Structural investigation : SANS (Small Angle Neutron Scattering)

H/D contrast with neutron scattering

>>> Hydrogenated IL in deuterated solvent.

Binary mixture [P_{4,4,4,14}Cl] / D₂O

Structure from SANS

Spherical micelles dispersed in solution due to electrostatic interactions

Form factor : hard spheres (micelles) Structure factor : hard spheres (larger radius)

Binary mixture [P_{4,4,4,14}Cl] / D₂O

Temperature dependence

no structural modification over the temperature range of the phase separation in corresponding acidic solutions

Nimrod, ISIS (UK)

Acidic ABS : $[P_{4,4,4,14}CI] / DCI / D_2O$

Structure from SANS

Acidic ABS : $[P_{4,4,4,14}CI] / DCI / D_2O$

Phase separation mechanisms with temperature?

What causes the increase of stickiness ? >> increase of electrostatic screnning

 $[\mathsf{P}_{4,4,4,14}\mathsf{CI}],\,\mathsf{NaCI},\,\mathsf{H}_2\mathsf{O}$

Free Cl⁻ titration

free [Cl⁻] decreases with temperature:

Cl⁻ exothermic adsorption at the micelle surface ΔH_{ads}~ 12 kJ/mol

Ţ

Screening of electrostatic repulsion micelle aggregation flocculation

G. Meyer et al., J. Phys. Chem. Let. (2022), 13, 2731-2736.

Phase separation mechanisms with [ions] ?

Does the addition of charges also cause the adsorption at the micelle surface ?

Free Cl⁻ titration

Specific Cl⁻ electrode limit of linearity

Phase separation mechanisms with [ions] ?

Does the addition of charges also cause the adsorption at the micelle surface ?

Phase separation mechanisms with [ions] ?

Does the addition of charges also cause the adsorption at the micelle surface ?

40% Cl⁻ adsorbed at the micelle surface, independent of [NaCl] : screening of the interactions through the ionic strength of the solution

 \rightarrow Modelling of electrostatic interaction through regulation charge therory in order to understand the role of solvent, electrical double layer and adsorption.

Liquid-liquid interface

Liquid-liquid interface

>> can we discriminate between a model of fluctuating surfactant at the surface with amplitude of 4 nm, or micelle coencentration decreasing over the length of 2 micelles diameters (= 6 nm) ?

Summary and perspectives

Phase separation in acidic [P_{4,4,4,14}][CI] LCSTsolution:

- **Self-aggregation** of IL in water in micelles dispersed by electrostatic interactions
- **Different screening** mechanism in presence of ions (acid or salt) with concentration and temperature
- exothermic adsorption of Cl⁻ ions compensates for the entropy loss
- **ionic/molecular adsorption at the micelle surface** is a possible general mechanism for the LCST in molecular systems.

> Do complexed **metallic ions migrate** toward their preferential phase in following the same mechanism ?

Collaborators

G. Meyer, PhD

Isabelle Billard, LEPMI, Grenoble

J-F. Dufreche, ICSM & U. Montpellier

Ralf Schweins, ILL

Thanks to...

Instrument scientists:

Nikoo Ghanadan, Charlotte Latargez, Thomas Guerry, Mathias Gonzales-Quillet, Adrien Estellon.

Ralf Schweins, ILL (France) Philip Gutfreund, ILL (France) Tristan Youngs, ISIS (UK)

