The proto-neutron-star inner crust in a multi-component plasma approach

Hoa DINH THI, Anthea FANTINA, Francesca GULMINELLI

July 4, 2023

26ème Congrès Général de la SFP

The PNS inner crust in a MCP approach

Table of Contents

- One-component plasma (OCP) approximation
- Multi-component plasma (MCP) approach
- 4 Conclusions and Outlooks

1.1 Neutron stars

Figure taken from 3G Science White Paper

- Mass: $\sim 1 2 M_{\odot}$
- Radius: ~ 10 km

Dinh Thi Hoa (LPC Caen)

The PNS inner crust in a MCP approach

Paris, 07/2023 3/14

1.2 NS formation

Lattimer & Prakash, Science(2004)

 \star NS are born hot with initial temperature exceeding 10^{10} K.

 \rightarrow Liquid multi-component plasma crust composed of different nuclear species \rightarrow impurities

Gulminelli & Raduta, PRC(2015); Fantina et al, A&A(2020); Carreau et al., A&A(2020)

Dinh Thi Hoa (LPC Caen)

The PNS inner crust in a MCP approach

Paris, 07/2023 4/14

1.3 NS crust and implications

Impurities of the crust could impact timing properties (Pons, Nature(2013)), magnetothermal evolution (Vigano, MNRAS(2013)).

1.4 Crystallization temperature of the crust

T. Carreau et al. A&A 635, A84 (2020)

- Liquid crust, i.e., crustal ions are put into collective motion.
 → How does the center-of-mass motion influence the composition of the crust?
- Coexistence of different nuclear species.
 → How does the nuclear distribution, hence impurity parameter, evolve with n_B and T?

OCP approximation

At each given thermodynamic condition, matter is hypothesized to be composed of electrons, free nucleons, and a single nucleus.

OCP approximation

At each given thermodynamic condition, matter is hypothesized to be composed of electrons, free nucleons, and a single nucleus.

⋆ Free energy density:

$$\mathcal{F} = \mathcal{F}_e + \mathcal{F}_{\mathrm{g}} + rac{F_i - V_N \mathcal{F}_{\mathrm{g}}}{V_{\mathrm{WS}}}.$$

OCP approximation

At each given thermodynamic condition, matter is hypothesized to be composed of electrons, free nucleons, and a single nucleus.

⋆ Free energy density:

$$\mathcal{F} = \mathcal{F}_e + \mathcal{F}_{\mathrm{g}} + rac{F_i - V_N \mathcal{F}_{\mathrm{g}}}{V_{\mathrm{WS}}}.$$

* Cluster free energy in a compressible liquid drop model:

$$F_i = M_i c^2 + F_{\text{bulk}} + F_{\text{Coul+surf+curv}} + F_{\text{trans}}^{\star}.$$

Dinh Thi Hoa (LPC Caen)

The PNS inner crust in a MCP approach

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

OCP approximation

At each given thermodynamic condition, matter is hypothesized to be composed of electrons, free nucleons, and a single nucleus.

⋆ Free energy density:

$$\mathcal{F} = \mathcal{F}_e + \mathcal{F}_{\mathrm{g}} + rac{F_i - V_N \mathcal{F}_{\mathrm{g}}}{V_{\mathrm{WS}}}.$$

* Cluster free energy in a compressible liquid drop model:

$$F_i = M_i c^2 + F_{\text{bulk}} + F_{\text{Coul+surf+curv}} + F_{\text{trans}}^{\star}$$

* F_{trans}^{\star} accounts for the cluster center-of-mass motion.

OCP approximation

At each given thermodynamic condition, matter is hypothesized to be composed of electrons, free nucleons, and a single nucleus.

⋆ Free energy density:

$$\mathcal{F} = \mathcal{F}_e + \mathcal{F}_{\mathrm{g}} + rac{F_i - V_N \mathcal{F}_{\mathrm{g}}}{V_{\mathrm{WS}}}.$$

* Cluster free energy in a compressible liquid drop model:

$$F_i = M_i c^2 + F_{\text{bulk}} + F_{\text{Coul+surf+curv}} + F_{\text{trans}}^{\star}$$
.

 $\star F_{\rm trans}^{\star}$ accounts for the cluster center-of-mass motion.

 \rightarrow Minimizing ${\cal F}$ under 2 constraints: charge neutrality and baryon number conservation.

Paris, 07/2023

7/14

2.2 OCP results

Dinh Thi H. et al., A&A 672, A160 (2023)

A (10) A (10)

3.1 Multi-component plasma (MCP) approach

MCP approach

At each given thermodynamic condition, matter is hypothesized to be composed of electrons, free nucleons, and an ensemble of different nuclear species.

Gulminelli & Raduta, PRC(2015); Grams et al., PRC(2018); Fantina et al, A&A(2020); Carreau et al., A&A(2020)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3.1 Multi-component plasma (MCP) approach

MCP approach

At each given thermodynamic condition, matter is hypothesized to be composed of electrons, free nucleons, and an ensemble of different nuclear species.

Gulminelli & Raduta, PRC(2015); Grams et al., PRC(2018); Fantina et al, A&A(2020); Carreau et al., A&A(2020)

⋆ Free energy density:

$$\mathcal{F}^{\mathrm{MCP}} = \mathcal{F}_g + \mathcal{F}_e + \sum_j n_N^{(j)} \left(F_i^{(j)} - V_N^{(j)} \mathcal{F}_g \right).$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3.1 Multi-component plasma (MCP) approach

MCP approach

At each given thermodynamic condition, matter is hypothesized to be composed of electrons, free nucleons, and an ensemble of different nuclear species.

Gulminelli & Raduta, PRC(2015); Grams et al., PRC(2018); Fantina et al, A&A(2020); Carreau et al., A&A(2020)

⋆ Free energy density:

$$\mathcal{F}^{\mathrm{MCP}} = \mathcal{F}_g + \mathcal{F}_e + \sum_j n_N^{(j)} \left(F_i^{(j)} - V_N^{(j)} \mathcal{F}_g \right).$$

* Minimizing \mathcal{F}^{MCP} under the constraints of charge neutrality and baryon number conservation $\rightarrow n_N^{(j)}$:

$$n_N^{(j)} = \bar{u}_f \exp \left\{ -\tilde{\Omega}_i^{(j)} / (k_B T) \right\}$$

3.2 Nuclear distribution

Occurence density

Dinh Thi Hoa (LPC Caen)

$$n_N^{(j)} = \bar{u}_f \exp\left\{-\tilde{\Omega}_i^{(j)}/(k_B T)\right\}$$

$$\tilde{\Omega}_{i}^{(j)} = F_{i}^{(j)} - F_{\text{trans}}^{\star,(j)} + k_{B}T \ln\left(\frac{(\lambda_{i}^{\star,(j)})^{3}}{g_{s}^{(j)}}\right) - V_{N}^{(j)}\mathcal{F}_{g} + \frac{\mathcal{R}^{(j)}}{\mu_{e}} + \frac{\mu_{e}}{\mu_{e}}Z^{(j)} - \frac{\mu_{n}}{\mu_{e}}A_{e}^{(j)}$$

* $\mathcal{R}^{(j)}$: Rearrangement term arising from the dependence of the Coulomb energy on the electron density.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3.2 Nuclear distribution

Occurence density

$$n_N^{(j)} = \bar{u}_f \exp\left\{-\tilde{\Omega}_i^{(j)}/(k_B T)\right\}$$

$$\tilde{\Omega}_{i}^{(j)} = F_{i}^{(j)} - F_{\text{trans}}^{\star,(j)} + k_{B}T \ln\left(\frac{(\lambda_{i}^{\star,(j)})^{3}}{g_{s}^{(j)}}\right) - V_{N}^{(j)}\mathcal{F}_{g} + \frac{\mathcal{R}^{(j)}}{\mu_{e}} + \frac{\mu_{e}}{\mu_{e}}Z^{(j)} - \frac{\mu_{n}}{\mu_{e}}A_{e}^{(j)}$$

* $\mathcal{R}^{(j)}$: Rearrangement term arising from the dependence of the Coulomb energy on the electron density.

* Chemical potentials:

+ Perturbative MCP ($\mu \approx \mu_{OCP}$): good approximation for the outer crust and outer part of the inner crust at crystallization temperature .

+ Self-consistent MCP ($\mu = \mu_{MCP}$): calculated from the charge neutrality and baryon number conservation equations.

3.3 Nuclear distribution vs. n_B

(A&A, submitted)

* At low densities, large clusters dominate and:

- The OCP prediction coincides with the most probable configuration in the MCP distribution.
- Perturbative MCP results in similar distribution as the self-consistent one.
- * At high densities, small clusters dominate.

Dinh Thi Hoa (LPC Caen)

The PNS inner crust in a MCP approach

Paris, 07/2023 11/14

3.4 Nuclear distribution vs. T

A b

 \rightarrow The contribution from light nuclei becomes more important at higher T.

3.5 Impurity parameter

 $\star Q_{imp}$ has important impacts on NS phenomena, e.g., timing (Pons, Nature(2013)), magneto-thermal evolution (Vigano, MNRAS(2013)), and transport properties (Schmitt, & Shternin (2018)).

Impurity parameter

 $Q_{\rm imp} = \langle Z^2 \rangle - \langle Z \rangle^2$

* Q_{imp} is consistently calculated throughout the whole inner crust. \rightarrow We provide tables and an analytical fit for Q_{imp} .

(A&A, submitted)

The PNS inner crust in a MCP approach

4. Conclusions and outlooks

- The translational free energy has an important effect on the crust composition.
- For the inner crust of PNS, the OCP approximation is no longer reliable, especially at high densities and temperatures.

 \Box Coexistence with pasta phases \rightarrow could impact the impurity parameter

□ Transport properties

イロト イポト イラト イラト