La matière nucléaire : contraintes expérimentales avec le couplage INDRA-FAZIA au GANIL.

Diego Gruyer, LPC Caen

(for the INDRA and FAZIA collaborations)

The nuclear equation of state Fundamental properties of nuclear matter. Macroscopic counterpart of nuclear interaction.

 $P(\rho,T) \leftrightarrow e(\rho_n,\rho_p,T)$

The nuclear equation of state Fundamental properties of nuclear matter. Macroscopic counterpart of nuclear interaction.

 $P(\rho,T) \leftrightarrow e(\rho_n,\rho_p,T)$

Implication in astrophysics

Mandatory ingredient to compute neutron star mass-radius or tidal polarizability, supernovae explosion dynamics...

Implication in nuclear physics

Governs the dynamics of heavy-ion collisions, nuclear masses and radii, dipole polarizability...

The nuclear equation of state Fundamental properties of nuclear matter. Macroscopic counterpart of nuclear interaction.

 $P(\rho,T) \leftrightarrow e(\rho_n,\rho_p,T)$

Implication in astrophysics

Mandatory ingredient to compute neutron star mass-radius or tidal polarizability, supernovae explosion dynamics...

Implication in nuclear physics

Governs the dynamics of heavy-ion collisions, nuclear masses and radii, dipole polarizability...

Jumping accros the scales Nuclear experiment \rightarrow astrophysic ingredients Observation \rightarrow test for nuclear interaction

Courtesy F. Gulminelli

Neutron star ingredients

Equation of state, isospin content (neutron-proton proportion) from beta-equilibrium and general relativity.

Mass and radius

Relativistic hydrostatic equation (Tolman-Oppenheimer-Volkoff) starting from the core density down to the surface of the star. Very sensitive to the equation of state !

Neutron star ingredients

Equation of state, isospin content (neutron-proton proportion) from beta-equilibrium and general relativity.

Mass and radius

Relativistic hydrostatic equation (Tolman-Oppenheimer-Volkoff) starting from the core density down to the surface of the star. Very sensitive to the equation of state !

Observational constraints

Any valid equation of state should be able to produce a neutron star as heavy as the heaviest observed one. Precise measurement of both mass and radius will drastically constrain the EoS !

Heavy ion collisions

During peripheral collisions, projectile and target interact and exchange some nucleons.

Heavy ion collisions

During peripheral collisions, projectile and target interact and exchange some nucleons.

Isospin equilibration

Projectile and target with different neutron to proton ratio equilibrate their N/Z during a collision. Two different interactions, leading to different equation of state, produce different equilibration path.

Experimental constraints

Any experimental measurement of the isospin equilibration rate would constrain the EoS !

Symmetry energy

Isovector part of the equation of state (difference between symmetric and pure neutron matter)

 $e(\rho, \delta) = e_{is}(\rho) + e_{iv}(\rho)\delta^2 + O(\delta^4)$ $\delta = (\rho_n - \rho_p) / \rho$

 $e_{iv}(\rho) \delta^2$

Drischle PRL 125 (2020) 172503 Reed PRL 126 (2021) 172503

 $n_0 (fm^{-3})$

0

97 (2018) 025805 Margueron PRC

Symmetry energy

Isovector part of the equation of state (difference between symmetric and pure neutron matter)

 $e(\rho, \delta) = e_{is}(\rho) + e_{iv}(\rho)\delta^2 + O(\delta^4)$ $\delta = (\rho_n - \rho_p)/\rho$

World wide multi-scale effort

International effort to constrain this term from nuclear experiment, observation and theory. A recent compilation using many experimental probes gives E_{sym} ~ 33MeV and L_{sym} ~ 60MeV. Then, PREX-2 results were published....

97 (2018) 025805 Margueron PRC

Symmetry energy

Isovector part of the equation of state (difference between symmetric and pure neutron matter)

 $e(\rho, \delta) = e_{i}(\rho) + e_{i}(\rho)\delta^{2} + O(\delta^{4})$ $\delta = (\rho_n - \rho_p) / \rho$

World wide multi-scale effort

International effort to constrain this term from nuclear experiment, observation and theory. A recent compilation using many experimental probes gives E_{sym} ~ 33MeV and L_{sym} ~ 60MeV. Then, PREX-2 results were published....

Challenges for heavy-ion collisions $\rightarrow \rho \ll \rho_0$: cluster population and properties (intermediate energy, see R. Bougault's talk) $\rightarrow \rho \sim \rho_0$: low order parameters (this talk) $\rightarrow \rho > \rho_0$: high order parameters (high energy)

End of the introduction (check the timing)

Isospin equilibration

Projectile and target N/Z equilibrate with time Equilibration rate sensitive to the EoS parameters It would require to follow the evolution of the N/Zratio of the quasiprojectile as a function of time... \rightarrow None of these quatity were measurable (2004)

 $Ri = (2X_1 - X_1 - X_2)/(X_1 - X_2)$, with $X_1 = f(Z, N) = N/Z$ Ri = +1 (-1) : no isospin equilibration Ri = O : full isospin equilibration

Isospin equilibration

Projectile and target N/Z equilibrate with time Equilibration rate sensitive to the EoS parameters It would require to follow the evolution of the N/Zratio of the quasiprojectile as a function of time... \rightarrow None of these quatity were measurable (2004)

Experimental approach

Really measure the N/Z ratio of quasi-projectile Interaction time and window size depend both on the impact parameter and the beam energy \rightarrow Replace time by impact parameter and run the same systems at 2 beam energies

 $Ri = (2X_1 - X_1 - X_2)/(X_1 - X_2)$, with $X_1 = f(Z, N) = N/Z$ Ri = +1 (-1) : no isospin equilibration Ri = O : full isospin equilibration

Isospin equilibration

Projectile and target N/Z equilibrate with time Equilibration rate sensitive to the EoS parameters It would require to follow the evolution of the N/Zratio of the quasiprojectile as a function of time... \rightarrow None of these quatity were measurable (2004)

Experimental approach

Really measure the N/Z ratio of quasi-projectile Interaction time and window size depend both on the impact parameter and the beam energy \rightarrow Replace time by impact parameter and run the same systems at 2 beam energies

E789 INDRA-FAZIA experiment

⁶⁴Ni+⁶⁴Ni collisions at 32 and 52 MeV/nuc ⁶⁴Ni+⁵⁸Ni collisions at 32 and 52 MeV/nuc ⁵⁸Ni+⁶⁴Ni collisions at 32 and 52 MeV/nuc ⁵⁸Ni+⁵⁸Ni collisions at 32 and 52 MeV/nuc $Ri = (2X_1 - X_1 - X_2)/(X_1 - X_2)$, with $X_1 = f(Z, N) = N/Z$ Ri = +1 (-1) : no isospin equilibration Ri = O : full isospin equilibration

INDRA-FAZIA coupling in GANIL INDRA in GANIL since 1993, 12 FAZIA blocks

replaced the forward part of INDRA in 2018.

INDRA

240 detection modules (~14° to ~180°) Si-CsI or CsI telescopes (Δ E-E and PSA in CsI) Fully analogic electronics (digital upgrade in 2020) \rightarrow full Z-identification, A-identification up to Z=5 \rightarrow impact parameter selector (multiplicity)

FAZIA

12 blocks for 192 detection modules (~1.5° to ~13°) Si-Si-CsI telescopes (ΔE - ΔE -E and PSA in Si/CsI) Fully digital and custom electronics \rightarrow full Z-identification, A-identification up to Z~25 \rightarrow isospin sensitive observable (quasi-proj. N/Z)

Particle identification

The energy loss of a particle in the detector depends on its charge (Z), mass (A), and energy (E)

Particle identification

The energy loss of a particle in the detector depends on its charge (Z), mass (A), and energy (E)

ΔE-E method

Divide the material in ΔE and E layers In the ΔE -E plot, particles populate lines characteristic of their charge (Z) and mass (A) \rightarrow old method pushed to its limit with FAZIA

Particle identification

The energy loss of a particle in the detector depends on its charge (Z), mass (A), and energy (E)

ΔE-E method

Divide the material in ΔE and E layers In the ΔE -E plot, particles populate lines characteristic of their charge (Z) and mass (A) \rightarrow old method pushed to its limit with FAZIA

Pulse shape analysis

Use the shape of the signal induced by charge collection to measure the charge (Z) and the mass (A). Requires to sample the signal. → specificity of FAZIA silicon detectors

E789 data reduction

Experiment performed at GANIL in 2019 First experiment with INDRA and FAZIA coupled Long and tedious identification and calibration phase : tasks shared between France, Italy and South Korea (~10 people involved, 4 PhD thesis)

E789 data reduction

Experiment performed at GANIL in 2019 First experiment with INDRA and FAZIA coupled Long and tedious identification and calibration phase : tasks shared between France, Italy and South Korea (~10 people involved, 4 PhD thesis)

Isospin equilibration

First « true » measurement of the equilibration as a function of the impact parameter at two beam energies. First publication by Caterina Ciampi in 2022 and two more articles ready for submission.

E789 data reduction

Experiment performed at GANIL in 2019 First experiment with INDRA and FAZIA coupled Long and tedious identification and calibration phase : tasks shared between France, Italy and South Korea (~10 people involved, 4 PhD thesis)

Isospin equilibration

First « true » measurement of the equilibration as a function of the impact parameter at two beam energies. First publication by Caterina Ciampi in 2022 and two more articles ready for submission.

Previous INDRA-VAMOS experiment Also measured with INDRA coupled to the VAMOS spectrometer years ago but published at the same time (see poster by Quentin Fable)

Transport model calculations

BUU transport model by Swagato Mallik. All equation of state empirical parameters can be modified + momentum dependance of the EoS.

Strategy

 Explore the full EoS parameter space
 Run the model for all experimental impact parameters (very time consuming)
 Compare with data and extract the EoS parameter probability distribution

Workplan

Show the sensitivity to low order parameters Run the full bayesian analysis (in progress) Swagato Mallik inviting scientist at GANIL in september to complete this analysis

D. Gruyer¹, R. Bougault¹, N. Le Neindre¹, O. Lopez¹, L. Manduci¹, M. Parlog¹, J. Quicray¹,
E. Vient¹, A. Rebillard-Soulié¹, A. Valente¹, A. Chbihi², J.D. Frankland², M. Henri², L. Morelli²,
C. Ciampi², E. Bonnet³, B. Borderie⁴, E. Galichet⁴, Q. Fable¹⁸, P. Napolitani⁴, S. Barlini⁵, M. Bini⁵, A. Camaiani⁵, G. Casini⁵, P. Ottanelli⁵, G. Pasqualli⁵, S. Piantelli⁵, G. Poggi⁵, S. Valdré⁵, L. Baldesi⁵, I. Lombardo⁶, G. Verde⁶, R. Alba⁷, C. Maiolino⁷, D. Santonocito⁷, M. Vigilante⁸, M. La Commara⁸, F. Gramegna⁹, M. Cicerchia⁹, G. Mantovani⁹, T. Marchi⁹, M. Cinausero¹⁰, D. Fabris¹⁰, M. Bruno¹¹, T. Kozick¹², S. Upadhyaya¹², A. Kordyasz¹³, A.A. Benitez¹⁴, F.P. Bernal¹⁴, J. Duenas¹⁴, J.E. Garcia Ramos¹⁴, B. Hong¹⁵, S.H. Nam¹⁵, S. Kim^{15,16}, K.I. Hahn¹⁶, M. Kweon¹⁷, H. Lee¹⁷.

¹LPC Caen, France. ²GANIL, France. ³Subatech Nantes, France. ⁴IPN Orsay, France. ⁵Univ./INFN Florence, Italy. ⁶INFN Sezione di Catania, Italy. ⁷INFN LNS Catania, Italy. ⁸INFN/University Naples, Italy. ⁹INFN LNL Legnaro, Italy. ¹⁰INFN/University Padova, Italy. ¹¹INFN / University Bologna, Italy. ¹²Jagellionian University, Cracow, Poland. ¹³University Varsaw, Poland. ¹⁴University of Huelva, Spain. ¹⁵ Korea University, Seoul, Korea. ¹⁶Ewha womans University, Seoul, Korea. ¹⁷Inha University, Nam-gu, Korea. ¹⁸L2I Toulouse, France