

Rare & BSM decays at Belle II, and prospects

26ème Congrès Général de la Societé Française de Physique - 06/07/2023 Jacopo Cerasoli

Université de Strasbourg, CNRS, IPHC, UMR 7178, 67037 Strasbourg, France

Search for New Physics in (super) rare decays

- Probes for New Physics at much higher scales than direct searches:
 - FCNC (high energy contributions) treated as point-like, encoded in Wilson coefficients $H_{eff}^{b \to s} = \frac{G_F}{\sqrt{2}} \sum V_{ib} V_{is}^* C_i(\lambda) Q_i(\lambda)$
 - · Long-distance physics (low energy contributions) described by effective operators
- New Physics can modify Wilson coefficients or add new ones, thus affecting branching ratios, angular observables, ...

Belle II at SuperKEKB KEK Report 2010-1

- Multi-purpose detector @ SuperKEKB accelerator
- Focus on *B*, charm and τ physics
- Asymmetric $e^+ e^-$ collisions at center-of-mass energy of 10.58 GeV
 - $\cdot \sigma(e^+e^- \to \Upsilon(4S)) \sim 1 \text{ nb}$
 - $\cdot \ \mathcal{B}(\Upsilon(4S) \to B\bar{B}) \sim 100\%$

- **Collected** ~ **428** fb⁻¹ (362 fb⁻¹ at Y(4S) mass + 66 fb⁻¹ off-resonance)
 - Target integrated luminosity: 50 ab⁻¹
- Instantaneous luminosity world record: $4.7 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ (June 2022)
 - Target instantaneous luminosity: 6 x 10³⁵ cm⁻² s⁻¹

Performances of Belle II KEK Report 2010-1

• While good with charged, suited also for measurements with neutrals, missing energy and inclusive decays

- Good and similar electrons and muons identification efficiency
- K efficiency ~ 90 % at ~ 5 % $\pi \rightarrow K$

Silicon Vertex Detector (SVD) -

Central Drift Chamber (CDC)

Pixel Detector (PXD)

TOP counter (TOP) —

Aerogel RICH counter (ARICH)

Electromagnetic Carolimeter (ECL)

 K°_{L} /Muon Detector (KLM)

06/07/2023

© Rey.Hori/KEK

Jacopo Cerasoli | Rare & BSM decays at Belle II

B-tagging Comput Softw Big Sci 3, 6 (2019)

- ~ 4π coverage + knowledge of initial 4-momentum \rightarrow Reconstruction of missing energy
- Full Event Interpretation (FEI)

06/07/2023

- · Hierarchical approach based on BDTs
- B reconstructed in ~10000 decay modes
- · Overall efficiency of ~ 1-2 % at ~ 5-10 % purity

Radiative decays

Fully inclusive $B \rightarrow X_s \gamma$ Belle2-CONF-PH-2022-018

• Dominating systematic uncertainties from limited size of simulation and fit model propagated to final result

06/07/2023

Jacopo Cerasoli | Rare & BSM decays at Belle II

$b \rightarrow s \ l^+ l^-$ decays

$B \rightarrow J/\psi$ (l^+l^-) K measurement arXiv:2207.11275 189 fb⁻¹

- Measurement of $B \rightarrow J/\psi$ (*l*+*l*) K branching fraction and $R(J/\psi)$ •
 - Four channels: $B^+ \rightarrow J/\psi$ (l^+l^-) K^+ and $B^0 \rightarrow J/\psi$ (l^+l^-) K^0_S ; $l = e, \mu$
- **Favored b** \rightarrow c transition, control channel for R(K)•

Fit to M_{bc} and ΔE : signal + background and $B^+ \rightarrow J/\psi \pi^+$ component for misidentified π

Jacopo Cerasoli | Rare & BSM decays at Belle II

0.2

 $R(J/\psi) = \frac{\mathcal{B}(B \to J/\psi(\mu^+\mu^-)K)}{\mathcal{B}(B \to J/\psi(e^+e^-)K)} \stackrel{\text{sm}}{=} 1$

$B \rightarrow J/\psi (l^+ l^-) K$ measurement <u>arXiv:2207.11275</u>

- Main systematic uncertainty coming from Y(4S) branching fraction to charged and neutral *B* pairs (2.6 %)
- Additional systematic uncertainty for K_{s}^{0} modes due to data-MC differences in K_{s}^{0} reconstruction efficiency (3 %)

 $\mathcal{B} \left(B^+ \to J/\psi(e^+e^-)K^+ \right) = (6.00 \pm 0.10 \pm 0.19) \times 10^{-5}$ $\mathcal{B} \left(B^+ \to J/\psi(\mu^+\mu^-)K^+ \right) = (6.06 \pm 0.09 \pm 0.19) \times 10^{-5}$ $\mathcal{B} \left(B^0 \to J/\psi(e^+e^-)K^0_S \right) = (2.67 \pm 0.08 \pm 0.12) \times 10^{-5}$ $\mathcal{B} \left(B^0 \to J/\psi(\mu^+\mu^-)K^0_S \right) = (2.78 \pm 0.08 \pm 0.12) \times 10^{-5}$

Similar efficiencies for electron and muon modes

• World averages:

 $\mathcal{B}(B^+ \to J/\psi K^+)_{\rm WA} = (10.20 \pm 0.19) \cdot 10^{-4}$ $\mathcal{B}(B^0 \to J/\psi K^0)_{\rm WA} = (8.91 \pm 0.21) \cdot 10^{-4}$ $\mathcal{B}(J/\psi \to e^+ e^-)_{\rm WA} = (5.971 \pm 0.032)\%$ $\mathcal{B}(J/\psi \to \mu^+ \mu^-)_{\rm WA} = (5.961 \pm 0.033)\%$

Prog. Theor. Exp. Phys. 2022, 083C01

$$R_{K^+} (J/\psi) = 1.009 \pm 0.022 \pm 0.008$$
$$R_{K^0} (J/\psi) = 1.042 \pm 0.042 \pm 0.008$$

Branching fraction of $B \rightarrow K^* l^+ l^-$ Belle2-CONF-PH-2022-009 (189 fb⁻¹)

- Measurement of $B \rightarrow K^* l^+ l^-$ branching fraction $(l = e, \mu)$
 - $B^+ \to K^{*+}(892) \ l^+ l^- \text{ with } K^{*+} \to K^0_S \ \pi^+, \ K^+ \ \pi^0$
 - $: B^{0} \to K^{*0}(892) \ l^{+}l^{-} \text{ with } K^{*0} \to K^{+} \ \pi^{-}$

06/07/2023

- Veto di-lepton mass ranges corresponding to γ , J/ψ and $\psi(2S)$, remaining background suppressed with BDT
- Fit to M_{bc} and ΔE , $B \to K^* J/\psi (l^+ l^-)$ used as control channel to fix signal PDF parameters

Branching fraction of $B \rightarrow K^* l^+ l^-$ Belle2-CONF-PH-2022-009

• Main systematic uncertainties from total number of *BB* (2.9 %) and data-MC differences in π^0 reconstruction efficiency (3.4 %)

$$\mathcal{B}(B \to K^* \mu^+ \mu^-) = (1.19 \pm 0.31^{+0.08}_{-0.07}) \cdot 10^{-6}$$
$$\mathcal{B}(B \to K^* e^+ e^-) = (1.42 \pm 0.48 \pm 0.09) \cdot 10^{-6}$$

Prog. Theor. Exp. Phys. 2022, 083C01

• World averages:

$$\mathcal{B}(B \to K^* \mu^+ \mu^-)_{\rm WA} = (1.06 \pm 0.09) \cdot 10^{-6}$$
$$\mathcal{B}(B \to K^* e^+ e^-)_{\rm WA} = (1.19 \pm 0.20) \cdot 10^{-6}$$

- Similar performances between electrons and muons
- Precision limited by sample size
 - First result towards determination of $R(K^*)$

LFU tests: prospects at Belle II

Current LHCb precision for $q^2 in [1.1, 6.0]$ GeV (9 fb⁻¹)

• Expected ~2 - 3 % precision with 50 ab⁻¹

$b \rightarrow s \ \tau^+ \tau^-$ searches and prospects

$B \rightarrow K^{(*)} v v$ searches and prospects

- $b \rightarrow s v v$ transition:
 - Suppressed in the SM ($\sim 10^{-5}$), any deviation would be a clear sign of new physics
 - **Theoretically clean**, no radiative effects from photons
- Golden channel for Belle II: high luminosity, clean environment and reconstruction of tag-side essential
- $B^+ \rightarrow K^+ v v$ search performed at Belle II <u>PRL 127.181802 (2021)</u>
 - · Inclusive reconstruction of tag-side
 - Fit in bins of BDT and $p_T(K^+)$
 - · Leading systematic uncertainty from uncertainty on background yield

 $\mathcal{B}(B^+ \to K^+ \nu \nu) > 4.1 \cdot 10^{-5} \text{ at } 90\% \text{ CL}$

		$\delta(\frac{\mathcal{B}(B \to K\nu\nu)}{\mathcal{B}_{\rm SM}(B \to K\nu\nu)})$		
Decay	$1\mathrm{ab}^{-1}$	$5{\rm ab}^{-1}$	$10\mathrm{ab}^{-1}$	$50\mathrm{ab}^{-1}$
$B^+ \to K^+ \nu \bar{\nu}$	0.55 (0.37)	0.28(0.19)	0.21(0.14)	0.11(0.08)
$B^0 \to K^0_{\rm S} \nu \bar{\nu}$	2.06(1.37)	$1.31 \ (0.87)$	1.05(0.70)	0.59(0.40)
$B^+ \to K^{*+} \nu \bar{\nu}$	2.04(1.45)	1.06(0.75)	0.83(0.59)	$0.53\ (0.38)$
$B^0 \to K^{*0} \nu \bar{\nu}$	1.08(0.72)	0.60(0.40)	0.49(0.33)	0.34(0.23)

- Update ongoing with 362 fb⁻¹
- Expected O(10%) precision with 50 ab⁻¹ arXiv:2207.06307

Lepton flavor violating decays

Standard Model branching ratio \rightarrow

$B^+ \rightarrow K^+ \tau l \text{ search at Belle}$ arXiv: 2212.04128 (accepted by PRL)

• Two charge configurations
$$(l = e, \mu)$$
: $B^+ \to K^+ \tau l^+, B^+ \to K^+ \tau^+ l^-$

1) Hadronic B_{tag} reconstruction

3) *BB* and *qq* background suppression with BDTs

• More on this mode(s) by Belle + Belle II in the near future

Conclusions

- Belle II is at the forefront in the search for rare and BSM decays
 - Expected exciting interplay with LHCb in the coming years
- Many analyses ongoing with 362 fb⁻¹, data-taking will restart end of 2023
- Rich physics program (e.g. see <u>Giulio's talk</u>), much more to come, stay tuned!

Jacopo Cerasoli | Rare & BSM decays at Belle II