Beyond the PMNS paradigm with neutrino oscillations

João Coelho

APC Laboratory

04 July 2023

Neutrino Oscillations

Where we are

Neutrino Experiments Many neutrino sources

Many neutrino detectors

The Data: Reactor Neutrinos

The Data: Accelerator Neutrinos

Evolution of Knowledge

Figure 1: The six oscillation parameters listed in the order they were first measured, and the evolution of our understanding of them. Data comes from [8, 31–40].

4 Jul 2023

P. B. Denton et al., arXiv:2212.00809

L and E landscape

- L/E is the classic fingerprint of the standard picture oscillations
- Exploring multiple baselines with high precision may potentially unveil BSM effects
- At very long baselines, BSM may also manifest from neutrino-Earth interactions

Upcoming **Major Players**

Reactor

Atmospheric

Global Effort

LBL Experiments

Dracos, NUFACT22

Unitarity

PMNS Triangle

- In analogy to the CKM matrix, neutrino oscillations are now approaching a constraint on the PMNS triangles
- However, oscillations don't provide as many observables as the quark sector
- These results rely on assumptions of unitarity of the PMNS matrix

Non-Unitarity in General

- Current measurements of neutrino mixing are already placing some constraints on unitarity in an agnostic scenario
- The next generation will make significant leaps in precision, testing unitarity at unprecedented levels
- JUNO/SuperChooz, DUNE and IceCube/KM3NeT are expected to drive these improvements

<u>S. Ellis et al., JHEP 12 (2020), 068</u>

Normalization Constraints

Closure Constraints

 $t_{\alpha\beta} \equiv U_{\alpha1}^* U_{\beta1} + U_{\alpha2}^* U_{\beta2} + U_{\alpha3}^* U_{\beta3} = 0 \quad (\alpha \neq \beta; \quad \alpha, \ \beta = e, \ \mu, \ \tau).$ S. Ellis et al., JHEP 12 (2020), 068

16

Sub-Matrix Scenario: Sterile Nus

DUNE in Unchartered Waters

- The ability of DUNE to measure multiple channels in a wide range of energies in both near and far detectors will project the sensitive regions to sterile neutrinos way beyond current anomalies
- This is related to the power of unitarity constraint from DUNE and other future experiments

4 Jul 2023

Unitarity and CPV

- Without assuming unitarity, CPV measurements would be severely degraded
- The degree of impact will depend on assumption on unitarity violation models

Matter Effects

4 Jul 2023

4 Jul 2023

22

$$H_{eff} = U \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{\Delta m_{21}^2}{2E} & 0 \\ 0 & 0 & \frac{\Delta m_{31}^2}{2E} \end{bmatrix} U^{\dagger} + V_e \begin{bmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^* & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^* & \epsilon_{\mu\tau}^* & \epsilon_{\tau\tau} \end{bmatrix}_{24}$$

NSI Status

Adapted from: <u>N. Chowdhury, PhD Thesis, IFIC (2021)</u>

- Current bounds are taken from a global analysis of neutrino data
- Upcoming measurements from DUNE may add extra sensitivity
- The new generation of atmospheric neutrino experiments will have a significant impact due to large matter potentials

Quantum Gravity

QG and Decoherence

- At Planck scales spacetime may be permeated with short-lived horizons
- Could such horizons act as a quantum bath, generating non-unitary quantum evolution?

Unitary Non-Unitary $\partial_t \rho = -i[H,\rho] + \not {\delta} H(\rho)$

Dimensional Analysis

 $\delta H \sim \mu^2 / M_P$

 $\mu \sim E? \qquad \mu \sim \Delta E?$

QG and Decoherence

- At Planck scales spacetime may be permeated with short-lived horizons
- Could such horizons act as a quantum bath, generating non-unitary quantum evolution?

Unitary Non-Unitary $\partial_t \rho = -i[H,\rho] + \frac{1}{2} \sum_j 2A_j \rho A_j^{\dagger} - \{A_j^{\dagger}A_j,\rho\}$

Lindblad Equation:

Most general Markovian evolution that preserves probabilities even in the environment system

Decoherence Constraints

N. Lessing, Ms Thesis (2022)

29

Lorentz Invariance Violation

 Atmospheric neutrinos, e.g. in DUNE, can provide complementary constraints without dependence on the astrophysical neutrino flux models

- Similar to NSI, the low-energy effects of QG may be expressed as modified dispersion relations with varying powers of energy
- Under some model assumptions, the flavour content of astrophysical neutrinos sets very stringent constraints

4 Jul 2023

Conclusion

- The precision era of neutrino oscillations is arriving
- Tests of unitarity are a very general and important tool
- Measure tau neutrinos will remain a challenge despite improvements from the upcoming generation
- Exploring the texture of the matter potential may lead to the discovery of non-standard neutrino interactions
- A full exploration of the L and E spectrum can be an excellent probe of **Quantum Gravity** effects
- And much more within and beyond oscillations...

Thank you!

2450 m

Clear Evidence of Oscillations

- First data confirm oscillation hypothesis at 5.9σ

BSM Searches

• First data already constraining some new physics scenarios

Sterile Neutrinos

- Explores very low Δm_{41}^2 values due to longer baselines
- World leading sensitivity to $U_{\tau4}$ coupling

Sterile Neutrinos

- Explores very low Δm_{41}^2 values due to longer baselines
- World leading sensitivity to $U_{\tau4}$ coupling
- Probing LSND/MiniBooNE anomaly in single experiment

Tau Appearance

- Atmospheric neutrinos are also an excellent probe of ν_τ appearance
- KM3NeT will be able to constrain the nt component to 7% level in 3 years
- Measurement can be used to probe the unitarity of the PMNS matrix
- Tau appearance can be confirmed with 5σ confidence in 2.5 years

New idea: Tagged Protvino to ORCA

A. V. Akindinov et al., "Letter of Interest for a Neutrino Beam from Protvino to KM3NeT/ORCA" <u>https://arxiv.org/abs/1902.06083</u>

- Baseline 2590 km
- First oscillation maximum 5.1 GeV
- Sensitivity to mass hierarchy and CPV
- Huge detector -> relax beam power
- New idea v tagging at source:

Neutrino Interactions

LiquidO o stochastic light confinement

Topology (X,Y) direct & native (PID)→ possible sub-mm vertex precision

Vanilla LiquidO: ID lattice (fibres along Z-axis only)

Anatael Cabrera (CNRS-IN2P3) — IJCLab / Université Paris-Saclay (Orsay)

topology's PID (no timing)...

PID e/ γ should be ≥ 100 :1 rejection @ $\geq 90\%$

(γ resembles more $e + = e - + 2\gamma$)

scattered points $(e^+ \approx \gamma)$

point-like (e- = α = p-recoil)

Neutrino physics with an opaque detector

LiquidO Consortium

Anatael Cabrera (CNRS-IN2P3) — IJCLab / Université Paris-Saclay (Orsay)

multi-MeV improves (more light too)...

Anatael Cabrera (CNRS-IN2P3) — IJCLab / Université Paris-Saclay (Orsay)

SuperChooz Precision Measurements

<u>A. Cabrera, CERN EP Se</u>

Final ESSvSB facility configuration

Dracos, NUFACT22

4 Jul 2023

Having access to a powerful proton beam...

What can we do with:

- 5 MW power
- 2 GeV energy
- 14 Hz repetition rate
- 10¹⁵ protons/pulse
- >2.7x10²³ protons/year
 - almost pure v_{μ} beam
 - small v_e contamination which could be used to measure v_e cross-sections in a near detector 4 Jul 2023

at 100 km from the target, per year (in absence of oscillations)

Can we go to the 2nd oscillation maximum using our proton beam?

Yes, if we place our far detector at around 500 km from the neutrino source.

Megaton Water Cherenkov detector

- Neutrino Oscillations
- Proton decay
- Astroparticles
- Understand the gravitational collapsing: galactic SN \boldsymbol{v}
- Supernovae "relics"
- Solar Neutrinos

4 Jul 2023

- Atmospheric Neutrinos
 - 500 kt fiducial volume (~20xSuperK)
 - Readout: ~20" PMTs
 - 30% optical coverage

 e^+ p^0 γ

47

Which baseline?

- ~60% δ_{CP} coverage at 5 σ C.L.
- >75% δ_{CP} coverage at 3 σ C.L.
- systematic errors: 5%/10% (signal/backg.) 4 Jul 2023

Candidate active mines

Final results

Possible ESSvSB schedule

(2nd generation neutrino Super Beam)

Neutrino Oscillations

- There are 3 neutrinos, so things are a bit more complicated
- Two independent differences in mass-squared (Δm_{21}^2 , Δm_{32}^2)
- 3 mixing angles (θ_{12} , θ_{13} , θ_{23}) and 1 CPV phase δ_{CP}

Missing Pieces

- Is $\theta_{23} = \pi/4$? Underlying symmetry?
- Do neutrinos violate CP? (δ_{CP})
- What is the mass ordering? (Mass Hierarchy)

Normal Hierarchy Inverted Hierarchy v_2 v_3 Δm_{21}^2 v_1 same? $\Delta m_{32}^2 < 0$? δ_{CP} ? Δm_{32}^2 $(\Delta m_{31}^2 < \Delta m_{32}^2 ??)$ JUNO v_2 v_1 v_3 ν_{μ} ν_{τ} v_e $\nu_{ au}$ v_{e}

symmetries

 $\sin^2 2\theta \times \sin^2$

Atmospheric Neutrinos

- Factor of ~2 between nue and numu
- Factor of ~2 between nu and nubar
- v_{μ} + anti- v_{μ} = (v_{μ} + anti- v_{μ} + v_{e} + anti- v_{e}) -> (v_{μ} + anti- v_{μ})

Resonance Formulas

$$\sin^2 2\theta_{13}^m \equiv \sin^2 2\theta_{13} \left(\frac{\Delta m_{31}^2}{\Delta^m m^2}\right)^2$$

Depends on sign of Δm_{31}^2 (MH)

$$\Delta^m m^2 \equiv \sqrt{(\Delta m_{31}^2 \cos 2\theta_{13} - 2E_\nu A)^2 + (\Delta m_{31}^2 \sin 2\theta_{13})^2},$$

$$E_{\rm res} \equiv \frac{\Delta m_{31}^2 \, \cos 2\theta_{13}}{2 \, \sqrt{2} \, G_F \, N_e} \simeq 7 \, {\rm GeV} \, \left(\frac{4.5 \, {\rm g/cm}^3}{\rho}\right) \, \left(\frac{\Delta m_{31}^2}{2.4 \times 10^{-3} \, {\rm eV}^2}\right) \, \cos 2\theta_{13} \, .$$

NSI Phase Space

- Very different from MH for nue
- Sensitivity in both channels, but numu is correlated with MH
- Still under unrealistic assumptions:
 - Perfect flavour selection
 - No systematics or nuisance pars.

 $ε_{e\tau} = 0.2, ε_{\tau\tau} = 0.04$

NSI Phase Space

- Very different from MH for nue
- · Sensitivity in both channels, but numu is correlated with MH

 $ε_{e\tau} = 0.2, ε_{\tau\tau} = 0.04$

- Still under unrealistic assumptions:
 - Perfect flavour selection
 - No systematics or nuisance pars.

Sterile Neutrinos

Resonances w/ Steriles

- New resonant peak due to Δm_{41}^2
- Some intermediate behaviour between θ_{13} and θ_{14} resonances
- θ_{23} suppression seems to be fairly independent of Δm_{41}^2

Resonances w/ Steriles

- New resonant peak due to Δm_{41}^2
- Some intermediate behaviour between θ_{13} and θ_{14} resonances
- θ_{23} suppression seems to be fairly independent of Δm^2_{41}

Resonances w/ Steriles

- New second order resonance also depends on CP phases
- Very rich structure with interplays between $U_{\mu4}$ and $U_{\tau4}$
- New paper out: https://arxiv.org/abs/2107.00344

 $\Delta_{32}^m / \Delta_{31}$

1.5

2.0

0.0

 $U_{\mu4}$

2.5

3.0

0.5

3.5

0.5

1.0

0.8

0.4

0.2

0.0

-10

4 Jul 2023

U₁₄

1.0

-0.5

ORCA Studies

- Strong sensitivity with ν_{μ} channel
- Very different from 3ν resonance
- Still under unrealistic assumptions:
 - Perfect flavour selection
 - No systematics or nuisance pars.

