

Rare and BSM decays at LHCb, and prospects

Christina Agapopoulou - CERN on behalf of the LHCb collaboration

Why rare flavour physics decays?

Indirect searches: Precise determination of SM properties can reveal discrepancies w.r.t. theory prediction - New Physics (NP) could be the culprit

- Rare decays (suppressed in the SM by GIM, CKM etc) can have large sensitivity to high energy NP scales
- Heavy flavour (B, Charm and Kaon decays) has a rich spectrum of rare & forbidden decays, in a very interesting energy regime
- Complementary to the direct search regime

lacksquare

The LHCb experiment

- Forward arm spectrometer $(2 < \eta < 5)$ optimised for the study of heavy flavour
- High precision vertexing & tracking systems
- Complemented with excellent PID
- Collected 9 fb⁻¹ of physics-worthy data in Run 1 (2011-2012) and Run 2⁻¹ (2015-2018)
- Currently commissioning it's first large upgrade

Disclaimer: not a complete overview, heavily focusing on recent results

C. Agapopoulou

Flavour Changing Currents

Flavour Changing Charged Currents (FCCC)

- Tree-level semi-leptonic decays
- ▶ BR ~ 10%
- Neutrinos (missing energy) in the final state

Flavour Changing Neutral Currents (FCNC)

- Not allowed at tree-level in the SM very rare
- Mediated by loops (penguins, box diagrams)
- ► BR < 10⁻⁶

Observables

• Differential branching fractions:

- ► i.e. let's count how often we see the decay!
- Large theory uncertainties on hadronic component (non-perturbative regime)

$b \rightarrow s \mu^+ \mu^-$ differential branching ratios

• Various $b \rightarrow s\mu^+\mu^-$ differential BRs measured by LHCb in the last years:

- Coherent trend for measured BRs < SM prediction
- But large theory uncertainties from form factors

0.05

0

10

JHFP 04 (2017

5

JHEP 11 (2016) 047

15

 q^{2} [GeV²/ c^{4}]

$b \rightarrow s \mu^+ \mu^-$ differential branching ratios

• Recent result from LHCb: first measurement of the $\Lambda_b^0 \to \Lambda(1520)\mu^+\mu^-$ BR in bins of q^2 [arXiv:2302.08262]

• Good agreement with SM prediction at high- q^2

- At low q^2 , significant variation among the different theoretical predictions
- First measurement with excited $\Lambda(1520)$, could provide complementary information

C. Agapopoulou

Observables

• Differential branching fractions:

- ▶ i.e. let's count how often we see the decay!
- Large theory uncertainties on hadronic component (non-perturbative regime)

Angular measurements:

- Choice of angular basis can help mitigate form factor theory uncertainties
- Access to asymmetries and polarisation measurements

Angular measurements

Access to various observables:

- Forward-backward asymmetry A_{FB}
- Longitudinal polarisation F_L
- Set of "clean" observables P_i to minimise hadronic uncertainties [JHEP 01 (2013), 48]

Tension seen in P_5' in various modes and in certain q^2 bins

- Real NP effect or contribution from charm loops?
- C. Agapopoulou

Observables

• Differential branching fractions:

- ▶ i.e. let's count how often we see the decay!
- Large theory uncertainties on hadronic component (non-perturbative regime)
- Angular measurements:
 - Choice of angular basis can help mitigate form factor theory uncertainties
 - Access to asymmetries and polarisation measurements

• Relative Branching Ratios (LFU):

- Between two lepton flavours (e.x. e vs µ)
- Hadronic uncertainties cancel*
- Also cancellation of various systematic uncertainties
- Very precise, but sensitive only to non-universal BSM models

*only in the SM

Observables

• Differential branching fractions:

- ▶ i.e. let's count how often we see the decay!
- Large theory uncertainties on hadronic component (non-perturbative regime)
- Angular measurements:
 - Choice of angular basis can help mitigate form factor theory uncertainties
 - Access to asymmetries and polarisation measurements

Very attractive measurements, both theoretically and experimentally!

Relative Branching Ratios (LFU):

- Between two lepton flavours (e.x. e vs mu)
- Hadronic uncertainties cancel*
- Also cancellation of various systematic uncertainties
- Very precise, but sensitive only to non-universal BSM models

*only in the SM, and not considering long distance contributions

LFU tests in $b \rightarrow s\ell\ell$ decays

• Measurements of branching fraction ratio R_X :

$$R_{X} = \frac{\int_{q_{min}}^{q_{max}} \frac{d\Gamma(H_{b} \to H\ell_{1}^{+}\ell_{1}^{-})}{dq^{2}} dq^{2}}{\int_{q_{min}}^{q_{max}} \frac{d\Gamma(H_{b} \to H\ell_{2}^{+}\ell_{2}^{-})}{dq^{2}} dq^{2}} dq^{2} \qquad e.x H_{b} = B^{0}$$

$$R_{K^{*0}} = \frac{\int_{q_{max}}^{q_{max}} \frac{d\Gamma(B^{0} \to K^{*0}\mu^{+}\mu^{-})}{dq^{2}} dq^{2}}{\int_{q_{min}}^{q_{max}} \frac{d\Gamma(B^{0} \to K^{*0}e^{+}e^{-})}{dq^{2}} dq^{2}}$$

- Experimental challenges:
 - Different detector response for electrons than for muons
 - Background modelling
 - Corrections to simulation

LFU tests in $b \rightarrow s\ell\ell$ decays

- Measurement of LFU in $B^+ \to K^+ \ell^+ \ell^-$ and $B^0 \to K^{*0} \ell^+ \ell^-$ decays with 9 fb⁻¹ of the LHCb dataset (Run 1 +2)) [arXiv:2212.09153] [arXiv:2212.09152]
- In two $q^2 = m(\ell,\ell)^2$ bins, $c\bar{c}$ resonances used as normalisation modes
- Control of electron vs muon experimental differences a major challenge
 - measurement performed as double ratio with resonant mode to cancel out systematics
- Single electron/muon ratio of normalisation mode
 r(J/ψ) used as validation (dominated by SM therefore needs to be unity)

C. Agapopoulou

Rare & BSM decays at LHCb - SFP 150 ans

 $\frac{J/\psi(1S)}{\psi(2S)} \quad \text{tree } b \rightarrow ccs$ photon
pole $C_7^{(\prime)}$ $\frac{d\Gamma}{dq^2} \quad \int C_7^{(\prime)}, C_9^{(\prime)}$ interference $C_9^{(\prime)}, C_{10}^{(\prime)}$ $\frac{d\Gamma}{q^2}$

[arXiv:2212.09153] [arXiv:2212.09152]

LFU tests in $b \rightarrow s\ell\ell$ decays

Both R_K and R_{K^*} compatible with the SM

[arXiv:2212.09153] [arXiv:2212.09152]

Improvements with respect to previous publication [Nat. Phys. 18, 277-282 (2022)]:

- Simultaneous fit & increased statistics
- Better understanding of $h \rightarrow e$ misID backgrounds:
 - Tigher PID requirements on electron modes
 - Residual misID component included in the fit

LFU tests in $b \rightarrow c \ell \nu$ decays

• Measurements of branching fraction ratio $R(H_c)$:

$$R(H_c) = \frac{\int_{q_{min}^2}^{q_{max}^2} \frac{d\Gamma(H_b \to H_c \tau \bar{\nu}_{\tau})}{dq^2} dq^2}{\int_{q_{min}^2}^{q_{max}^2} \frac{d\Gamma(H_b \to H_c \ell' \bar{\nu}_{\ell})}{dq^2} dq^2}$$

- Semileptonic decays challenging at LHCb:
 - Missing energy due to presence of neutrinos
 - Tau reconstruction challenging
 - Large backgrounds -> precise simulation needed for modelling and calibrations
 - Template fits needed to extract signal yields
 - But, large available statistics and many complementary modes

with
$$H_c = D^{*+}, D^0, D^+ \dots$$
 and $\ell = e, \mu$

- Taus reconstructed in two ways in LHCb:
 - Hadronic: $\tau^+ \to \pi^+ \pi^+ \pi^- (\pi^0) \bar{\nu}_{\tau}$
 - Muonic: $\tau^+ \rightarrow \mu^+ \nu_\mu \bar{\nu}_\tau$

LFU tests in $b \rightarrow c \ell \nu$ decays

Two recent LHCb measurements of $R(D^{(*)})$ in the hadronic and muonic modes, **1-1.9** σ agreement with the SM

$$\Lambda_b^0 \rightarrow \Lambda_c^+ \ell^- \overline{\nu}_\ell \ (3 \, \mathrm{fb}^{-1})$$

First LFU test in baryonic semileptonic decays which provide complementary information, **consistent with the SM prediction**

Forbidden processes

- Search for $B^0_{(s)} \rightarrow p\mu^-$ decays [arXiv:2210.10412]:
 - Lepton and Baryon number violating from proton decay limit < 10⁻²⁷
 - First search of this decay using Run 1 + 2 dataset
 - Semileptonic decays are dominant bkg. source
 - Obtained upper limits: $O(10^{-8} 10^{-9})$

- Search for $B^0 \to K^{*0} \tau^{\pm} \mu^{\mp}$ decays [arXiv:2209.09846]:
 - Lepton flavour violating decay only possible in the SM through neutrino oscillations
 - First search of this decay using Run 1 + 2 dataset
 - Fit to corrected mass to account for missing momentum perpendicular to B flight direction
 - Obtained upper limits: $O(10^{-5} 10^{-6})$

And what about rare charm?

- Probing $c \rightarrow u$ type FCNC complementarity to B physics!
- Charm scale not too far from Λ_{OCD} & resonant D contributions
 - Accurate theoretical predictions are challenging
 - Test SM consistency / search for NP through clean observables & null tests
- Very suppressed in the SM due to GIM and CKM suppressions
 - Rich spectrum of channels from forbidden and ultra-rare to less rare / resonant
- So far, LHCb has observed important muon modes next step is the electrons!

LFV, LNV,	BNV	FCNC							VMD	F	Radia	tive
0	10 ⁻¹⁵	10 ⁻¹⁴	10 ⁻¹³	10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴
$D^+_{(s)} \to h^- l^+ l^+$ $D^0 \to X^0 \mu^+ e^-$ $D^0 \to X^{} l^+ l^+$			D^0	$D^0 \rightarrow ee$	$\rightarrow \mu\mu$	$D^{0} \to \pi$ $D^{0} \to \rho$ $D^{0} \to K^{+}$ $D^{0} \to \phi$	-π ⁺ l ⁺ l ⁻ l ⁺ l ⁻ K ⁻ l ⁺ l ⁻ l ⁺ l ⁻	$D^{0} \rightarrow D^{0} \rightarrow D^{0$	$\frac{K^{+}\pi^{-}V(-)}{K^{*0}}V(-)$	→ II) D ⁻ II) D ⁰ D ⁰	$f^+ \to \pi^+ \phi$ $f^0 \to K^- \pi$ $f^0 \to K^{*0} V$	(→ ll) z ⁺ V(→ ll) ⁄ (→ ll)

C. Agapopoulou

[arXiv:2212.11203]

Search for $D^0 \rightarrow \mu^+ \mu^-$

- FCNC with GIM and helicity suppression never been observed
- Interference from long and short distance contributions in the SM
 - $\mathscr{B} \sim \mathcal{O}(10^{-11})$ [Phys. Rev. D 93, 074001]
- Previous limit by LHCb (1 fb⁻¹):
 - $B(D^0 \to \mu^+ \mu^-) < 6.2 \times 10^{-9}$ at 90% CL [PLB 2013 06 37]
- Analysis strategy:
 - D^0 from reconstructed $D^{*+} \rightarrow D^0 \pi^+$ tagged decays
 - Rare mode normalised to $D^{*+} \rightarrow D^0(\rightarrow h^-\pi^+)\pi^+$
 - MisID suppressed using PID info, BDT to mitigate combinatorial background
 - ML fit to $m(D^0)$ and $\Delta m = m(D^{*+}) m(D^0)$ in 3 intervals

C. Agapopoulou

Search for $D^0 \rightarrow \mu^+ \mu^-$

Signal mode fit for the most sensitive BDT interval [arXiv:2212.11203]

 $B(D^0 \to \mu^+ \mu^-) < 2.94(3.25) \times 10^{-9}$ at 90% CL

Improvement by x2 w.r.t. previous result

Most stringent limit of FCNC on the charm sector

C. Agapopoulou

Rare decays in the future of LHCb

The LHCb upgrade program

U1: from 2022 - 2030

- x5 increase in inst. luminosity (4 × 10^{32} -> 2 × 10^{33} $cm^{-2}s^{-1}$)
- Integrated luminosity at the end: 50 fb⁻¹
- Majority of sub-detectors upgraded, hardware trigger stage completely removed!
- Being commissioned right now

U2: from 2032 - 2040

- x7 increase in inst. luminosity $(2 \times 10^{33} \rightarrow 1.5 \times 10^{34} \ cm^{-2} s^{-1})$
- 300 fb⁻¹ after 10 years
- Expecting to run with x7 pile-up, detector upgrades to withstand radiation and occupancy challenges (radiation hard materials, precise timing information)

Prospects

- Run 3 & beyond will improve the sensitivity thanks to the luminosity increase
 - Especially for analyses that were previously limited by statistical uncertainties

• Novel approaches in reconstruction and trigger are being deployed right now

• Targeting more challenging signatures (electrons, taus)

Conclusions

- Rare heavy flavour decays are unique indirect probes for New Physics
- LHCb continues to be a world-leading precision measurement experiment
- New results with the first 2 Runs keep coming out, AND
- A whole new run with a fully upgraded detector is starting now...
- So stay tuned for more exciting results!

Thank you for your attention!

Backup

Why Lepton Flavour Universality?

- Several BSM scenarios show dependence of R_X ratios on q²
- Example: different C₉, C₁₀ dependence of R_{K*} between mid- and high-q²

Electrons and muons at LHCb

- Electrons and muons interact in significantly different ways with the LHCb detector
- Understanding these differences is essential for correctly interpreting LFU ratio measurements

Muon reconstruction:

- Hits from muon stations matched to extrapolated tracks
- Momentum measured from the bending of the track

Electron reconstruction:

- Tracks matched to ECAL clusters
- Electrons often emit Bremstrahlung in LHCb

27

 Momentum measured from the bending of the track + Brem photons

Two main differences:

Recovery procedure of Brem photons not perfect

ECAL has higher occupancy than Muon System \rightarrow higher hardware trigger thresholds

C. Agapopoulou

Search for the decay $B^0 \rightarrow \phi \mu^+ \mu^-$

<u>J. High Energ.</u> Phys. 2022, 67 (2022)

Motivation:

- Ultra-rare color-suppressed penguin annihilation processes $\mathcal{O}(10^{-12})$
- $\omega \phi$ mixing brings expected SM $\mathscr{B} \sim \mathcal{O}(10^{-11} 10^{-10})$
- Sensitive to NP contributions!

Analysis strategy:

- Full Run 1 + Run 2 LHCb dataset (9 fb⁻¹)
- ϕ , J/ψ , $\psi(2S) q^2$ regions excluded
- $B_s^0 \rightarrow \phi \mu^+ \mu^-$ used as normalisation channel

Main backgrounds:

- Peaking decays with mis-ID
- Semileptonic $B_s^0 \to D_s^- (\to \phi \mu^- \bar{\nu}) \mu^+ \nu$
- Combinatorial
- Partially reconstructed

Example penguin annihilation

C. Agapopoulou

Search for the decay $B^0 \rightarrow \phi \mu^+ \mu^-$

<u>J. High Energ.</u> Phys. 2022, 67 (2022)

- BR($B^0 \rightarrow \phi \mu \mu$) from mass fit in range including both B^0 and B^0_s peaks
- $B_s^0 \rightarrow \phi J/\psi (\rightarrow \mu^+ \mu^-)$ used to train combinatorial MVA classifier + $B_{(s)}^0$ mass shape
- No signal observed \rightarrow upper limit on BR

$$\mathcal{B}(B^0 \to \phi \mu^+ \mu^-) < 3.2 \times 10^{-9}$$
 at a 90% CL

Rare & BSM decays at LHCb - SFP 150 ans

0

5000

$B_{(s)}^{0}$ decays into two muons

s

- Analysis supersedes previous LHCb result [Phys. Rev. Lett. 118, 191801]
 - Full Run 1 + Run 2

 $B_s^0 \rightarrow \mu^+ \mu^-$ observed @ 10 σ :

First search for $B^0 \rightarrow \mu^+ \mu^- \gamma$

• $\mathscr{B}(B_s^0 \to \mu^+ \mu^-) = 3.09^{+0.46+0.15}_{-0.43-0.11} \times 10^{-9}$

 $B^0 \rightarrow \mu^+ \mu^- \& B^0 \rightarrow \mu^+ \mu^- \gamma$ not significant \rightarrow limits

5500

W.

Phys. Rev. Lett. 128

041801

μ*

μ

30

Phys. Rev. Lett. 128 041801

$B_{(s)}^0$ decays into two muons

Effective lifetime determination:

$$\tau_{\mu^+\mu^-} = \frac{\tau_{B_s^0} (1 + 2A_{\Delta\Gamma_s}^{\mu\mu} y_s + y_s^2)}{(1 - y_s^2)(1 + A_{\Delta\Gamma_s}^{\mu\mu} y_s)}$$

• In the SM, only $B^0_s \to \mu\mu$ only from heavy eigenstate ($A^{\mu\mu}_{\Delta\Gamma_s} = 1$)

• $\tau_{\mu\mu}$ sensitive to NP

Strategy:

- Fit in reduced mass window to remove mis-ID backgrounds
- Tighter trigger for better modelling of efficiency dependence on $\tau_{\mu\mu}$
- Background-subtracted $\tau_{\mu\mu}$ distributions from sPlot technique

 $\tau_{\mu\mu} = 2.07 \pm 0.29 \pm 0.03 \ ps$

Consistent with $A^{\mu\mu}_{\Delta\Gamma_s}$ = 1 at 1.5 σ

Search for $B_{(s)}^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ decays

Extremely rare in the SM:

- B_s^0 : $\mathcal{O}(10^{-10}), B^0$: $\mathcal{O}(10^{-12})$
- Full Run 1 + Run 2 dataset
- Search for 6 signal modes:
 - ► Non-resonant decays: $B_{(s)}^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$
 - Tree level resonant $b \to c$ transitions: $B^0_{(s)} \to J/\psi(\to \mu^+\mu^-)\mu^+\mu^-$
 - BSM light scalar resonances ($m_a \sim 1 \text{ GeV}$) $B^0_{(s)} \rightarrow a(\rightarrow \mu^+\mu^-)a(\rightarrow \mu^+\mu^-)$
- $B_s^0 \to J/\psi(\to \mu\mu)\phi(\to \mu\mu)$ used as a normalisation channel
- Combinatorial background suppressed by BDT
- Tight Particle Identification requirements for $h \to \mu$ misidentification background
- Results extracted from maximum-likelihood fits to the 4body mass spectra

J. High Energ.

Phys. 2022, 109

C. Agapopoulou

Search for $B_{(s)}^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ decays

<u>J. High Energ.</u> Phys. 2022, 109

No significant signal observed \rightarrow most stringent limits to date!

$$\begin{aligned} \mathcal{B} \left(B_s^0 \to \mu^+ \mu^- \mu^+ \mu^- \right) \\ \mathcal{B} \left(B^0 \to \mu^+ \mu^- \mu^+ \mu^- \right) \\ \mathcal{B} \left(B_s^0 \to a \left(\mu^+ \mu^- \right) a \left(\mu^+ \mu^- \right) \right) \\ \mathcal{B} \left(B^0 \to a \left(\mu^+ \mu^- \right) a \left(\mu^+ \mu^- \right) \right) \\ \mathcal{B} \left(B_s^0 \to J/\psi \left(\mu^+ \mu^- \right) \mu^+ \mu^- \right) \\ \mathcal{B} \left(B^0 \to J/\psi \left(\mu^+ \mu^- \right) \mu^+ \mu^- \right) \end{aligned}$$

$$< 8.6 \times 10^{-10}$$
,
 $< 1.8 \times 10^{-10}$,
 $< 5.8 \times 10^{-10}$,
 $< 2.3 \times 10^{-10}$,
 $< 2.6 \times 10^{-9}$,
 $< 1.0 \times 10^{-9}$.

Photon polarisation in $\Lambda_h^0 \to \Lambda \gamma$

- $b \rightarrow s\gamma$ (FCNC): γ mostly **left-handed** in SM
- $\Lambda_b \to \Lambda \gamma$ with $\Lambda \to p \pi$ probes helicity structure

$$\frac{d\Gamma}{d(\cos\theta_p)} \propto 1 - \alpha_{\gamma} \alpha_{\Lambda} \cos\theta_p$$

- Measure α_{γ} from proton angular distribution!
- Analysis performed with full Run 2 data (6 fb⁻¹)
- α_{Λ} from BESIII [<u>Nature Phys. 15 (2019) 631</u>]
- BDT to mitigate combinatorial background, small $\Lambda_b \to \Lambda \eta (\to \gamma \gamma)$ included in the fit

 y_2

 x_2

 $z_2 \land \pi$

 p^{\neg}

Rare & BSM decays at LHCb - SFP 150 ans

Phys. Rev. D 105,

L051104

 $\Lambda^0_{\theta_\Lambda}$

LHCb

🕂 Data

0.5

0

6 fb⁻¹

Total

 $\Lambda^0_{\mu} \to \Lambda \gamma$

Combinatorial

 $\cos\theta_p$

Photon polarisation in $\Lambda_h^0 \to \Lambda \gamma$

 $\alpha_{\gamma} = 0.82 \pm 0.23 \pm 0.13$

Phys. Rev. D 105,

L051104

Photon polarisation in $\Lambda_b^0 \rightarrow \Lambda \gamma$

<u>Phys. Rev. D 105,</u> <u>L051104</u>

Feldman-Cousins technique used to set confidence intervals within the [-1,1] ^{0.5} polarisation physical limits

 $\alpha_{\gamma}^{-} > 0.56 \ (0.44) \ at \ 90 \ \% \ (95\%) \ CL$ $\alpha_{\gamma}^{+} = - \ 0.56^{+0.36}_{-0.33} \ (stat.)^{+0.16}_{-0.09} \ (syst.)$ $\alpha_{\gamma} = \mathbf{0} \ . \ \mathbf{82^{+0.17}_{-0.26}} \ (\mathbf{stat.})^{+0.04}_{-0.13} \ (\mathbf{syst.})$

- First measurement of photon polarisation in $\Lambda_b^0 \to \Lambda \gamma$ decays
- Consistent with CP symmetry and SM prediction at 1σ
- Can be used to place constraints on real and imaginary parts of Wilson coefficients $C_7^{(')NP}$
- Exclusion of previously uncovered phase-space!