

Searching a signal beyond the Standard Model in Flavour Physics

Emi KOU (IJCLab-IN2P3, Université Paris-Saclay)

4 July 2023 @ Cité des sciences et de l'Industrie, Paris

Introduction

Particle physics

- Investigation of fundamental particles and their interactions
- Standard Model (SM) is a SU(3) $_cxSU(2)LxU(1)Y$ gauge theory

SM contains 19(26) free parameters, among which 13 (20) are to describe the flavour sector

	1st generation	2nd generation	3rd generation
up type	up	charm	top
charge 2/3	2.2±0.5MeV	1.27±0.03GeV	173.21±0.87GeV
down type	down	strange	bottom
charge -1/3	4.7±0.5MeV	96±6MeV	4.18±0.04GeV
charged lepton charge -1	electron 0.511MeV	μ 105.7MeV	τ 1.78GeV
neutrinos	ν _e	ν _μ	ν _τ
charge 0	<2.0eV	<0.17eV	<18.2eV

Flavour sector of SM ~ QUARKS ~

- The quark mass comes from the Yukawa coupling of SM.
- The Yukawa couplings are non-diagonal 3x3 (complex) matrix.

$$u_{L} = \begin{pmatrix} u_{L} \\ c_{L} \\ t_{L} \end{pmatrix} \quad d_{L} = \begin{pmatrix} d_{L} \\ s_{L} \\ b_{L} \end{pmatrix} \quad u_{R} = \begin{pmatrix} u_{R} \\ c_{R} \\ t_{R} \end{pmatrix} \quad d_{R} = \begin{pmatrix} d_{R} \\ s_{R} \\ b_{R} \end{pmatrix}$$
Weak eigenstate
$$\mathscr{L}^{Y} \propto \overline{u}_{L} \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ u_{R} \end{pmatrix} u_{R} + \overline{d}_{L} \begin{pmatrix} ? \\ ? \\ ? \\ d_{R} \end{pmatrix} d_{R}$$
Oscillating among
different flavours
$$u \quad c \quad t \quad c \quad u \quad c \quad t \quad u$$

$$d \quad b \quad s \quad d \quad s \quad b \quad s \quad d$$

Flavour sector of SM ~ QUARKS ~

Observed mass hierarchy is the result of the diagonalisation of this matrix

Mass eigenstate $\mathscr{L}^{Y} = \overline{u}_{L}^{(m)} \begin{pmatrix} m_{u} & 0 & 0 \\ 0 & m_{c} & 0 \\ 0 & 0 & m_{t} \end{pmatrix} u_{R}^{(m)} + \overline{d}_{L}^{(m)} \begin{pmatrix} m_{d} & 0 & 0 \\ 0 & m_{s} & 0 \\ 0 & 0 & m_{b} \end{pmatrix} d_{R}^{(m)}$ $u_{L} = U_{L}^{u} u_{L}^{(m)} \quad d_{L} = U_{L}^{d} d_{L}^{(m)} \quad u_{R} = U_{R}^{u} u_{R}^{(m)} \quad d_{R} = U_{R}^{d} d_{R}^{(m)}$ $U_{L}^{u}, U_{L}^{d}, U_{R}^{u}, U_{R}^{d} : \text{ the rotation matrix (unitary)}$

Weak interaction

Flavour sector of SM ~ QUARKS ~

• Observed quark flavours are in the mass eigenstate.

 $\boldsymbol{\mathscr{L}}^{Cc} \boldsymbol{\propto} \, W^{\mu} \overline{\boldsymbol{u}}_L \, \boldsymbol{\gamma}_{\mu} \, \boldsymbol{d}_L$

- When flavour is identified, the production probability is multiplied by the product of the up and down mixing matrix: CKM (Cabibbo-Kobayashi-Maskawa) matrix.
- The complex phase in U_{CKM} is the source of the CP violation in quark sector

Flavour sector of SM ~ LEPTONS ~

- Let us decouple the heavy Majorana neutrinos.
- Then, we can describe the lepton sector equivalently.

$$\begin{aligned} \nu_{L} = \begin{pmatrix} v^{e_{L}} \\ v^{\mu_{L}} \\ v^{\tau_{L}} \end{pmatrix} \quad l_{L} = \begin{pmatrix} e_{L} \\ \mu_{L} \\ \tau_{L} \end{pmatrix} \quad \nu_{R} = \begin{pmatrix} v^{e_{R}} \\ v^{\mu_{R}} \\ v^{\tau_{R}} \end{pmatrix} \quad l_{R} = \begin{pmatrix} e_{R} \\ \mu_{R} \\ \tau_{R} \end{pmatrix} \\ \end{aligned}$$
Weak eigenstate
$$\mathscr{L}^{Y} \propto \overline{\nu}_{L} \begin{pmatrix} ? & \gamma & 2 \\ ? & \gamma & \gamma \\ ? & \gamma & \gamma \\ ? & \gamma & \gamma \end{pmatrix} \nu_{R} + \overline{l}_{L} \begin{pmatrix} ? & \gamma & 2 \\ ? & \gamma & \gamma \\ ? & \gamma & \gamma \\ ? & \gamma & \gamma \end{pmatrix} l_{R}$$

$$v_{L} = U_{L}v_{V}v_{L}^{(m)}$$
 $l_{L} = U_{L}l_{L}^{(m)}$ $v_{R} = U_{R}v_{R}v_{R}^{(m)}$ $l_{R} = U_{R}l_{R}^{(m)}$

Flavour sector of SM ~ LEPTONS ~

- The PMNS matrix is not measurable from the weak decay.
- However, it can be measured from the neutrino oscillation!

$$P_{\mu e} = | < v_e | v_{\mu} > | = | \sum U^*_{\mu i} U_{ej} < v_j | v_i > |^2$$

 $|\langle v_j | v_i \rangle|^2$ is function of $\Delta m_{ij^2} L/E$

Testing the flavour sector of the SM

Flavour physics in SM

- Measurable quantities (* so far...)
 - \checkmark quark: masses and the CKM matrix
 - ✓ lepton: mass differences* and the (unitary*) PMNS matrix
- What justifies this (single) Yukawa interaction picture?

	1st generation	2nd generation	3rd generation			down	strange	bottom
up type	up	charm	top					
charge 2/3	2.2±0.5MeV	1.27±0.03GeV	173.21±0.87GeV		up	Vub	Vus	Vub
down type	down	strange	bottom 4.18±0.04GeV		4	0.2245±0.0008	24	
charge -1/5	4.1±0.51MeV	9010101ev			charm	Vcd	Vcs	Vcb
charged lepton	electron 0.511MeV	µ 105.7MeV	τ 1.78GeV			0.221±0.004	0.987±0.011	0.0410±0.0014
charge -1					top	Vtd	Vts	Vtb
neutrinos charge 0	ν _e <2.0eV	ν _μ <0.17eV	ν _τ <18.2eV			0.0088±0.0003	0.0388±0.0011	1.013 ± 0.030

Flavour physics in SM

- Measurable quantities (* so far...)
 - \checkmark quark: masses and the CKM matrix
 - ✓ lepton: mass differences* and the (unitary*) PMNS matrix
- What justifies this (single) Yukawa interaction picture?

	1st generation	2nd generation	3rd generation		νa	<i>γ</i>	ν τ
up type charge 2/3	up 2.2±0.5MeV	charm 1.27±0.03GeV	top 173.21±0.87GeV	Fleeheen	U _{e1}	U _{e2}	U _{e3}
down type charge -1/3	down 4.7±0.5MeV	strange 96±6MeV	bottom 4.18±0.04GeV	Electron	0.803~0.845	0.514~0.578	0.142~0.155
charged lepton	electron 0.511MeV	µ 105.7MeV	τ 1.78GeV	Mu	U _{µ1} 0.233~0.505	Vµ2 0.460~0.693	Vµ₃ 0.630~0.779
cnarge -1 neutrinos charge 0	νe <2.0eV	ν _μ <0.17eV	ν _τ <18.2eV	Tau	U _{τ1} 0.262~0.525	U _{τ2} 0.473~0.702	U ₇₃ 0.610~0.762

Test 1: CP violation

If there are more than 3 generations, we must observe a CP violation!
 ✓ quark: done!

✓ lepton: (almost) done!

• This is assuring (counter example: strong CP, $\theta_{strong} \leq 10^{-10}$)!

Test 2: Unitarity of CKM matrix

- CKM matrix is a product of up and down type quark mass matrices.
- It is an *unitary matrix* with 3 mixing angle and 1 CP violating phase.
- We can test the unitarity by fitting these 4 parameters by using measurements of independent flavour and CP violating phenomena.

Unitarity triangles

The Unitarity triangle: test of Unitarity

 Hundreds of observables (including dozens of CP violating ones) are consistently by the CKM matrix.

Test 3: FCNC process

 The unitarity of the mixing matrix predicts the suppression of Flavour Changing Neutral Current (FCNC) via GIM (Glashow, Illiopolous, Maiani) mechanism.

• For neutral current, flavour does **not** change even in the mass eigenstate.

Test 3: FCNC process

 The unitarity of the mixing matrix predicts the suppression of Flavour Changing Neutral Current (FCNC) via GIM (Glashow, Illiopolous, Maiani) mechanism.

Test 3: FCNC process

 The unitarity of the mixing matrix predicts the suppression of Flavour Changing Neutral Current (FCNC) via GIM (Glashow, Illiopolous, Maiani) mechanism.

- Large top quark mass induces a relatively large FCNC!
- Observed as many **B meson and K meson rare decays**!

Signal beyond the SM?

Signal beyond the SM?

Excess of CP violation

- Non-unitarity of CKM
- Excess of FCNC

Signal beyond the SM?

 The three outcome of the simple description of the flavour physics in SM is broken as soon as we add a particle Beyond the SM.

E.g.1: Two Higgs doublet model

• We can't diagonalise the two Yukawa matrix simultaneously.

E.g.2: Extra fermion model

 CKM matrix is a part of (3+n)₁x(3+n₂) matrix.

Future of the Unitarity Triangle

Strategy for discovery via precision

 $\Delta_{NP} = \text{Deviation from SM}$ = (exp. - SM) ± $\sqrt{(\sigma_{exp})^2 + (\sigma_{SM})^2}$

Strategy I: reducing the experimental uncertainty

- Belle II increases the luminosity (50 times by ~2035)
- Hadronic channels become available after LHCb upgrade (started in 2023!)
- Challenges: as statistic error will be at a per-mill level for many rare decays, controlling the systematic errors becomes essential!

Strategy for discovery via precision

 $\Delta_{NP} = \text{Deviation from SM}$ = (exp. - SM) ± $\sqrt{(\sigma_{exp})^2 + (\sigma_{SM})^2}$

Strategy II: reducing the theoretical uncertainty

- Theoretical development in QCD higher order corrections, Lattice QCD will allow to reduce the theoretical uncertainties.
- Improved measurements of "theoretical control channels" are very important to reduce the theoretical errors (data driven, excellent example, muon g-2).

Strategy for discovery via precision

 $\Delta_{\text{NP}} = \text{Deviation from SM}$ $= (\text{exp.} - \text{SM}) \pm \sqrt{(\sigma_{\text{exp}})^2 + (\sigma_{\text{SM}})^2}$

Strategy III: explore new observables!

• High statistics data or detector upgrade allow us to explore new observables which have never been studied before!

Strategy III: explore new observables!

arXiv:1808.10567 (PTEP 2019) Belle II Physics Book (E.K. as an editor)

*Angular/Dalitz distribution, time dependent measurement Polarisation, CPV etc...

*Null test

Unexpected CPV, LFV (e.g. $\tau \rightarrow \mu \gamma$), LFUV, Dark Photon, Axion...

*(Ultra)-rare decays

B-> $\gamma\gamma$, K(*)νν (start seeing them at Belle II!), baryon decays (more and more available at LHCb) etc...

*New hadronic resonances

More XYZ, more Pentaquarks!

Conclusions

- Flavour physics targets an indirect search of a signal beyond the Standard Model. It is a complementary method to the direct search at LHC.
- Main signatures we are looking at are
 - * Excess of CP violation
 - * Non-unitarity of CKM
 - * Excess of FCNC

which can be induced any (natural) extension of the SM.

Backup

Linear Colliders What has been confirmed?

Observed Quark masses

✓ SM does not say anything about the Yukawa coupling so the masses and the couplings are not predictable. $\sqrt{V_{CKM}}$ has to be a 3x3 unitary matrix which includes only one complex phase. √N.B. LHC and LCs can tell us the linearity of the masse and the Higgs coupling. t Vckm: Cabibbo-

Kobayashi-Maskawa matrix

Flavour Physics beyond SM

The indirect search of new physics through quantum effect: very powerful tool to search for new physics signal!

This very simple picture does not exist in most of the extensions of SM: suppression of the FCNC is NOT automatic and also CP violation parameters can appear.

N.B.: SM also has an "unwanted" CP parameter (strong CP problem).

SUSY: Quark and Squark mass matrices can not be diagonalized at the same time ---> FCNC and CP violation Mutli-Higgs model, Left-Right symmetric model: Many Higgs appearing in this model ---> tree level FCNC and CP violation Warped extradimension with flavour in bulk: Natural FCNC suppression though, K-K mixing might be too large due to the chiral enhancement