

FRITZ-HABER-INSTITUT MAX-PLANCK-GESELLSCHAFT

Processus de relaxation électronique non-locaux d'ions solvatés

Rémi Dupuy

CNRS, Sorbonne Université – Laboratoire de Chimie Physique, Matière et Rayonnement

T. Buttersack, F. Trinter, C. Richter, S. Gholami, O. Björneholm, U. Hergenhahn, B. Winter and H. Bluhm

Non-local decay processes

X-ray based spectroscopies

Exhaustive review : Jahnke et al. 2020, Chemical Reviews 120 (20) 11295

Clusters

- Model systems
- First evidence
- Large body of works covering many aspects

- Highly relevant (e.g. radiolysis)
- Several works on pure solvents and dissolved simple ions

• Few works, often indirect evidence

Liquid microjet photoemission spectroscopy

Instrument EASI of the group of Bernd Winter

Hemispherical electron analyzer

Synchrotron beam

PETRA III P04 beamline

Winter & Faubel 2006 *Chem. Rev. 106 (4) 1176*

Seidel et al. 2011 J. Phys. Chem. Lett. 2 (6) 633

Ammann et al. 2018

Dupuy et al. 2021 J. Chem. Phys. 154 (6) 060901 **Electronic structure of the CaCl₂ solution**

Energy levels measured by photoelectron spectroscopy (XPS) :

What about resonant ICD?

Initial step: Resonant excitation

What about resonant ICD?

Initial step: Resonant excitation

Ca 2p absorption edge and resonant spectra

Conclusion 1 : we detect ICD

ICD-like processes depend on neighbours and inter-molecular distance => potential structural probe

E.g. Pokapanich et al. 2014, *ScienceAsia 40 (4) 290* on K Halides solutions : no signature found

Pohl et al. 2017, J. Phys. Chem. B 121 (32) 7709 :

Lithium acetate forms ion pairs: Signature observed in ETMD spectrum

Contact ion pair

CaCl₂ in solution starts forming ion pairs around 4M (X-ray diffraction) : *Badyal et al. 2004 J. Phys. Chem. A 108 11819* CaCl₂ forms no ion pairs even at 6.4 M (saturation) (Neutron diffraction) : *Megyes et al. 2004 J. Phys. Chem. A 108 7261*

FRITZ-HABER-INSTITUT MAX-PLANCK-GESELLSCHAFT

Thank you!

From the Fritz-Haber-Institut:

Tillmann Buttersack Clemens Richter Shirin Gholami Florian Trinter

Uwe Hergenhahn Bernd Winter Hendrik Bluhm Collaborators:

Olle Björneholm (Uppsala uni)

Non-resonant Auger and ICD decay

Already observed in Pokapanich et al. 2011, J. Am. Chem. Soc. 133 (34) 13430 Auger $3p^{-2} \sim 60 \text{ eV} + \Delta E_c$ ICD $3p^{-2} \text{ w}^{-1} \sim 40 \text{ eV} + \Delta E_c'$ **Electronic structure of the CaCl₂ solution**

