HELIUM MICROSOLVATION OF POLYCYCLIC AROMATIC HYDROCARBON CATIONS

Florent Calvo

LiPhy, CNRS and University Grenoble Alpes, France

INTRODUCTION: HELIUM NANODROPLETS

Unique cryogenic solvent: chemically inert, can trap exotic molecules and enable high resolution spectroscopy

Numerous *atoms, molecules and ions* have been investigated inside (or outside) helium droplets, both experimentally and computationally

MASS SPECTROMETRY EXPERIMENTS

lon abundances of complexes microsolvated by helium give direct insight into their relative stability

 \implies theoretical support needed to provide a more complete picture of microsolvated complex

One important historical step achieved on fullerene ions:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

INTERPRETATION OF FULLERENE EXPERIMENTS

Atomistic modeling of cationic complexes $[C]^+He_n$ using

polarizable potential energy surfaces

$$V(\mathbf{R}) = \underbrace{V_{\mathrm{He-He}}(\mathbf{R})}_{\mathrm{pair potential}} + V_{\mathrm{He-dopant}}(\mathbf{R}) + V_{\mathrm{pol}}(\mathbf{R})$$

with polarization treated self-consistently:

$$V_{
m pol}({f R}) = -\sum_{i\in {
m He}} rac{lpha_{
m He}}{2} \underbrace{ec{{f E}_i}}_{
m total \ field} \cdot \underbrace{ec{{f E}_i^0}}_{
m bare \ field}$$

parametrized based on quantum chemical calculations

- A rigid approximation for the *dopant molecular cation* (DFT geometry)
- A classical survey of the stable structures
- A more realistic incorporation of nuclear quantum effects using path-integral molecular dynamics

Example of C_{60}^+ : role of corrugation

Highly symmetric (I_h group) structures at n = 20 and 32...but not 60 Corrugation is essential to stabilize wetted structures

PATH-INTEGRAL MD SIMULATIONS AT 1 K: RIGIDITY

Behavior much more liquidlike in the quantum description; Vacancy-mediated disorder also in classical case above n = 32

 \implies reentrant freezing at n = 60 concomitant with single shell size compatible with rigid body rotation

POLYCYCLIC AROMATIC HYDROCARBON DOPANTS

PAHs relevant as combustion products (soot precursors) and indentified in interstellar media

Computational exploration of $[PAH]^+He_n$

The highly anisotropic nature of the PAH cations reflects on the microsolvation features:

FC, JPCA (2015)

The present?

Atom-resolved mass spectrometry experiments on specific PAH cations:

ANTHRACENE VERSUS PHENANTHRENE

 \implies Different "magic numbers" between the two isomers:

- Extra stabilities at sizes 4, 8, 30, 36 for anthracene cation
- Extra stabilities at sizes 4, 13, 29, 37 for phenanthrene cation

THEORETICAL INTERPRETATION: ANTHRACENE

 \implies sizes 8, 30, and 36 associated with geometric shell closures

◆□ > ◆母 > ◆臣 > ◆臣 > ● 臣 = の < ⊙

THEORETICAL INTERPRETATION: PHENANTHRENE

< □ > < 同 > < 三</p>

3

 \implies Only partial agreement (for sizes 30 and 37)

The case of Pyrene

 \Rightarrow Shell closures at sizes 32 and 36 reproduced, extreme delocalization at size 6

- 1

HEXAPHENYLBENZENE: A "ROTOR" MOLECULE

 $C_{42}H_{30}^+$: some degree of lateral flexibility

DFT minimization in cationic state breaks the sixfold symmetry, with two phenyl groups rotated by 61° and four groups rotated by 53° (D₆ \rightarrow D₂ point group)

MASS SPECTROMETRY ABUNDANCES ON HPB CATION

・ロト ・ 戸 ト ・ ヨ ト ・

3.0

 \implies Special stabilities at sizes 2, 14, and 28

INTERPRETATION OF MS EXPERIMENTS

Concluding remarks

- Theoretical interpretation of mass spectrometry experiments on cationic polyaromatic compounds microsolvated by helium
- Nuclear delocalization significantly alters the geometrical structure of the microsolvated complexes
- Special abundances usually associated with shell closures but some residual discrepancies
- \rightarrow high sensitivity of solvation propensity toward geometrical details of the complex
- $\rightarrow\,$ evidence for symmetry breaking in cationic hexaphenylbenzene

FUTURE WORK

- Accounting for vibrational structure of the complexes
- **2** Accounting for superfluidity? $(\rightarrow QMC)$

THANK YOU FOR YOUR ATTENTION!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶