

Influence of non-covalent interactions on carbonyl

reactivity with amines

E.L. Zins, O. Aroule, N. Solem, C. Romanzin, C. Alcaraz, R. Thissen

Objectives:

Understand how non-covalent interactions with a thirdspecies can affect reactivity between A and B

- Bio-chemistry
- Atmospheric chemistry
- Astrochemistry

<u>Objectives:</u>							
Understand how non-covalent interactions with a third- species can affect reactivity between A and B							
Compare	theoretical	data	with	experimental			

- Compare theoretical data with experimental observations
 - Gas phase reactivity

3

- $LC-\omega PBE + GD3-BJ$
- Mass spectrometry+ molecular beam
- Radicals cations or protonated aggregates

Previous results:

On the relevance of the electron density analysis for the study of micro-hydration and its impact on the formation of a peptide-like bond. Derbali, et al. (2022). Theor. Chem. Acc., 141, 34. Study of the Reactivity of CH₃COOH⁺⁺ and COOH⁺ Ions with CH₃NH₂: Evidence of the Formation of New Peptide-like C (O)–N Bonds. Derbali, et al. (2021). J. Phys. Chem. A, 125, 10006

Ion molecule reactivity experiments

CERISES setup (Collision Et Réactions d'Ions Sélectionnés par Electrons de Seuil)

Ion molecule reactivity experiments

CERISES setup (Collision Et Réactions d'Ions Sélectionnés par Electrons de Seuil)

 $Ac_5H^+ + Ma$

cross section ($\mbox{\ensuremath{\$}}^{\mbox{\ensuremath{\$}}}$)

Theoretical study

Theory/experience comparison

- Determine the enthalpy of reaction formation:
- Search for the structures of the reagents and the products LC-ωPBE + GD3-BJ

How?

- MESP (Molecular Electrostatic Potential)
- CREST (Conformer Rotamer Ensemble Sampling Tool), Densityfunctional based tight binding (DFTB)

Pracht, P., Bohle, F., & Grimme, S. (2020). Automated exploration of the low-energy chemical space with fast quantum chemical methods. *Physical Chemistry Chemical Physics*, 22(14), 7169-7192.

 $Ac_5H^+ + Ma$

$Ac_5H^+ + Ma$

Reactivity of Ac_xH⁺: Theoretical results

Conclusions and perspectives

- Possible study of aggregates' reactivity
 - Successful observation of the reaction of Ac₁₋₅W₁₋₂H⁺ aggregates
 - Complementarity of theoretical and experimental approaches
- Similar reactivity regardless the aggregates'size
 - Strong interaction between protonated aggregates and methylamine
 - Non-covalent complexes versus covalent interactions
 - Dissociation of initial complexes formed with methylamine
- Micro-hydrated complexes

16

Preferential loss of water molecules

Thank you for your attention!

Experimental results

Parent Ac _x H+	Exothermic/Endothermic				
	[MaH]+	[AcMaH]+	[(Ac) ₂ MaH]+		
2	Exothermic	Exothermic	Exothermic		
3	Endothermic	Exothermic	Exothermic		
5	Endothermic	Not observed	Exothermic		

20

Search for the structure of observed ions

22

MESP of acetic acid dimer

MESP of protonated acetic acid

MESP of acetic acid

