MC13 - Effets d'environnement et de solvatation sur les processus moléculaires

Two-Dimensional Infrared (2DIR) spectroscopy as a probe of environment effects

<u>A. Jouan¹, M. Jonušas^{1#}, W. Chin¹, J. Helbing², J. Vincent¹, C. Crépin¹</u>

¹ ISMO, UMR 8214, CNRS, Université Paris-Saclay, Orsay

[#] current affiliation : LOB, INSERM-CNRS, Institut Polytechnique de Paris, Palaiseau

² Department of Chemistry, University of Zurich, Zurich

Table of contents

- Introduction
- Experimental setup
- Solvent effects on Fe(CO)₅ dynamics
- Conclusion and prospects

Introduction

Probing interactions and environment effets in the condensed phase: vibrational dynamics in the ground state

2DIR spectroscopy: non-linear technique

3rd order macroscopic polarization:

- vibrational structure and anharmonicities;
- \circ populations (T₁) and phase (T₂) dynamics;
- couplings, energy transfers between modes

2DIR signal :
$$\mathbf{S}(\omega_1, \mathbf{t_2}, \omega_3) \propto \int_{-\infty}^{\infty} d\mathbf{t_1} \int_{-\infty}^{\infty} d\mathbf{t} \ \mathbf{P^{(3)}}(\omega_1, \mathbf{t_2}, \omega_3) \mathbf{e^{i\omega_1 t_1} e^{i\omega_3 t_1}}$$

Experimental setup

Fe(CO)₅ vibrational structure and dynamics

C≡O stretching modes and Berry pseudo-rotation mechanism ([2], fig. from [3])

 \rightarrow We expect the transfer to happen slower as the viscosity increases

[2] R. Stephen Berry, J. Chem. Phys. 32 (3), pp 933–938 (1960)
[3] Thon et al. J. Chem. Phys. 156, 024301 (2022)

Population relaxation dynamics

probe beam

Solvent	T ₁ (ps)
n-hexane	155 ± 10
n-dodecane	145 ± 10
1-hexanol	100 ± 10

2DIR spectra of Fe(CO)₅

2DIR spectra for $t_2 = 1$, 5, and 10 ps in hexane

Solvent	Δ _{ee} (cm ⁻¹)	Δ _{aa} (cm⁻¹)
n-hexane	11.5 ± 0.5	16.3 ± 1.0
n-dodecane	13 ± 1	14.4 ± 0.5
1-hexanol	12 ± 1	14 ± 1

Cross-peaks appear as a sign of a transfer occurring between the two modes

Transfer dynamics

Solvent	T ₁ (ps)	τ (ps)	η (mPa.s)
n-hexane	155 ± 10	12.1 ± 1.1	0.3
n-dodecane	145 ± 10	13.7 ± 1.2	1.3
1-hexanol	100 ± 10	7.7 ± 0.8	4.4

We expected the transfer time to be longer as the viscosity increases : Other phenomena in hexanol ?

[4] Cahoon et al. Science 319, 1820 (2008) 8

Conclusion

- 2DIR is a **powerful tool** for studying vibrational dynamics
- We observe **solvent effects** on transfer dynamics

Prospects

Studies in cryogenic matrices:

- T<25K, Δv~0,2-2 cm⁻¹
- Site effects on the structure and dynamics
- **2DIR spectroscopy** to disentangle complex spectral structures

Supplements

Bibliography

- [1] Helbing, J. and Hamm, P., J. Opt. Soc. Am. B 28, pp 171-178 (2011)
- [2] R. Stephen Berry, *J. Chem. Phys.* 32 (3), pp 933–938 (1960)
- [3] Thon et al. J. Chem. Phys. 156, 024301 (2022)
- [4] Cahoon et al. *Science* 319, 1820 (2008)

Coupling between the E' and A₂" modes

We observed a cross-peak at short times, characteristic of a **coupling** between the modes.

DFT calculations made in [2] predicted in dodecane a crossed anharmonicity parameter of χ = 0.6 cm⁻¹, which is a good match for the experimental anharmonic shift Δ = 3.0 ± 0.3 cm⁻¹

Cryogenic setup

Pumping system

Liquid He bath cryostat

2DIR spectra: case of two coupled oscillators

Crosspeaks are then indicative of a coupling between modes

$$\begin{array}{c} \omega_{|00\rangle \rightarrow |01\rangle} \neq \omega_{|10\rangle \rightarrow |11\rangle} \\ 7 \qquad 5 \end{array}$$

(a) Level schme of two coupled oscillators
|ij): i quanta in #1 and j quanta in #2.
(b) Corresponding 2DIR spectra [1],[2]

14

Mach-Zehnder interferometer

IR beam pathway [3]

détecteur

Vertically separated beams :

- IR : two outputs
 - towards the sample
 - towards the pyrometer
- HeNe : quadrature fringe counting to precisely retrieve t₁

(a) HeNe beam pathway. (b) Quadrature fringe counting with photodiodes PD1 et PD2 **[3]**

Experimental setup

Berry pseudo-rotation

Schematic view of the Berry pseudo-rotation [3]

The equatorial plane (yellow triangle) undergoes a 90° roattion from (a) to (b), on a timescale of a few ps [2].

This geometry change allows for transfer between the two modes.

Mechanism and energy profile [2]

[2] Cahoon et al. *Science* 319, 1820 (2008) 17