

SCIENCES SORBONNE UNIVERSITÉ

Xavier Michaut, Franck Le Petit, Evelyne Roueff, Jacques Le Bourlot, Emeric Bron, Mathieu Bertin, Jean-Hugues Fillion, Pascal Jeseck, Darek Lis, Alexandre Faure, Pierre Hily-Blant

Influence of nuclear spin conversion of H₂ molecules on the chemistry of the interstellar medium - Experiment and modelling

Japhar Michoud

ORTHO TO PARA RATIO (OPR) IN THE INTERSTELLAR MEDIUM (ISM)

Why look at the OPR in the ISM?

- Parameter tracer such as the temperature of the medium?
- Impact on the chemistry of the ISM?

 $OPR = 3.2 \pm 0.1$ OPR = 0.2 - 0.5N. Flagey et al. ApJ 762 11 (2013) Y. Choi et al. A&A 572 L10 (2014) ONE OF THE LOWEST OPR VALUES REPORTED IN THE ISM

MEUDON PDR CODE (Photo Dissociated Region)

PDR CODE :

- Computes the atomic and molecular structure of interstellar clouds.
- Analysis of physical and chemical processes

MAIN PARAMETERS :

- G₀ (UV intensity radiation field), stellar spectrum
- Density, pressure, user profile density : clumps
- Metallicity and elemental abundances
- Cosmic ray ionisation rate
- Grain properties

- Abundances of hundreds species
- Excitation in levels
- Gas & grains temperatures
- Intensities (H_2 , CO, H_2O , ...)
- Column densities of species

MEUDON PDR CODE (Photo Dissociated Region)

PDR CODE :

- Computes the atomic and molecular structure of interstellar clouds.
- Analysis of physical and chemical processes

MAIN PARAMETERS :

- G₀ (UV intensity radiation field), stellar spectrum
- Density, pressure, user profile density : clumps
- Metallicity and elemental abundances
- Cosmic ray ionisation rate
- Grain properties

- Abundances of hundreds species
- Excitation in levels
- Gas & grains temperatures
- Intensities (H_2 , CO, H_2O , ...)
- Column densities of species

Why the study of H_2 is so important for the interstellar medium?

- H_2 is the most abundant molecule in the interstellar medium
- \implies The OPR of H₂ may have a great impact on the chemistry

E. F. van Dishoeck and al. Chem. Rev. 2013, 113, 12, 9043–9085

Why the study of H_2 is so important for the interstellar medium?

- H_2 is the most abundant molecule in the interstellar medium
- \implies The OPR of H₂ may have a great impact on the chemistry

E. F. van Dishoeck and al. Chem. Rev. 2013, 113, 12, 9043–9085

Why the study of H_2 is so important for the interstellar medium?

- H_2 is the most abundant molecule in the interstellar medium
- \implies The OPR of H₂ may have a great impact on the chemistry

E. F. van Dishoeck and al. Chem. Rev. 2013, 113, 12, 9043–9085

Why the study of H_2 is so important for the interstellar medium?

- H_2 is the most abundant molecule in the interstellar medium
- \implies The OPR of H₂ may have a great impact on the chemistry

E. F. van Dishoeck and al. Chem. Rev. 2013, 113, 12, 9043–9085

PROCESSES THAT GOVERN THE ORTHO TO PARA RATIO IN THE PDR CODE AND H_2O CHEMISTRY

(i) Chemistry

Modification of reaction rates depending on the ortho/para character of the species

$$H_3O^+ + e^- \longrightarrow H_2O + H \qquad k$$

 $\begin{cases} H_3O^+ - o + e^- \longrightarrow H_2O - o + H & k_1 = k \\ H_3O^+ - p + e^- \longrightarrow H_2O - p + H & k_2 = k/2 \\ H_3O^+ - p + e^- \longrightarrow H_2O - o + H & k_3 = k/2 \end{cases}$

- Radiative processes
- Collisional processes
- Formation processes
- Destruction processes
- The excitation is calculated for 4 ortho/para species : H_2 , H_2O , $H_2^{18}O$ and H_3^+ - X-o and X-p are not chemical species in the PDR code - The excitation computation in quantum states is only made for the X species while taking into account the ortho/para reactions of the X species

Between 300-400 more reactions with **OP** chemistry than without

(ii) Excitation

Different processes that populate and depopulate an i-level for a given species :

Energy levels for a given species

The population X-o and X-p are finally deduced from this computation

I	
•	
T	
I	

ORION BAR : H_2O **CHEMISTRY**

 H_2O levels 3₁₂ 250 3₁₃ 2₂₀ 3₀₃ 2₂₁ 200 150 E (K) 2₁₁ 2₁₂ 2₀₂ 100 1₁₀ 1₁₁ 50 1₀₁ 0₀₀ 0 ³7,3,303 Ortho Para

Rotational lines

ORION BAR : H_2O **CHEMISTRY**

Ortho/para chemistry has little impact compared to other excitation processes

S140 : H_2O **CHEMISTRY**

Gonzalez-c-model : Gonzalez et al A&A 2008 PS05 : Poelman & Spaans A&A 2005

S140 : H_2O **CHEMISTRY**

Gonzalez-c-model : Gonzalez et al A&A 2008 PS05 : Poelman & Spaans A&A 2005

Ortho/para chemistry has a greater impact compared to other excitation processes

Modelisation :

• Chemistry is in competition with other processes such as collisional and radiative processes

 The impact of ortho/para chemistry on water formation depends on the region studied

- In cold regions, surface grain chemistry plays a more important role than gas phase chemistry
- A new study of these regions with surface grain chemistry taking into account adsorption and desorption processes would provide a more complete model

ORTHO-PARA SELECTIVITY OF H₂ OF DESORPTION PROCESSES

Behaviour of the nuclear spin isomers at the solid-gas interface ?

NUCLEAR SPIN CONVERSION (NSC) DYNAMICS ON SURFACES

Molecular hydrogen on Amorphous Solid Water (ASW)

At 10K

	(SPICES) LERMA In situ	FORMOLISM (1) After desorption	<i>Sugimoto</i> (2) After desorption	Aft
t (min)	H ₂ : 220 (17)	H ₂ : >300	H ₂ : 8 (2) D ₂ : 49 (38)	
H ₂ coverage	1ML	0.3 - 0.75 ML	1 - 2 ML	

- (1) Chehrouri, Fillion et al. PCCP 2011
- (2) Sugimoto & Fukutani. Nature Physics 2011
- (3) Ueta, Watanabe, Hama, Kouchi. PRL 2016

COSPINU2

~ 5 - 6 μ m of H₂O amorphous and porous water

Use of a special depostion technique to produce thick ices without breaking the background vacuum. Allows to avoid redeposition during the experiment.

Cu polycristallin, T = 9-10 K

Surface (interface H₂O – vacuum) saturated with H₂

~ 5 - 6 μ m of H₂O amorphous and porous water

Fourier Transform IR spectroscopy

Cu polycristallin, T = 9-10 K

Surface (interface H₂O – vacuum) saturated with H₂

 $\sim 5 - 6 \,\mu m \text{ of } H_2 O$ amorphous and porous water

~ 5 - 6 μ m amorphous and porous H₂O saturated with H₂. IR spectra in the range 4050-4200 cm⁻¹ obtained with **COSPINU2** and time evolution of the two spin isomers

4060

~ 5 - 6 μ m amorphous and porous H₂O saturated with H₂. IR spectra in the range 4050-4200 cm⁻¹ obtained with **COSPINU2** and time evolution of the two spin isomers

4060

Absorbance

~ 5 - 6 μ m amorphous and porous H₂O saturated with H₂. IR spectra in the range 4050-4200 cm⁻¹ obtained with **COSPINU2** and time evolution of the two spin isomers

~ 5 - 6 μ m amorphous and porous H₂O saturated with H₂. IR spectra in the range 4050-4200 cm⁻¹ obtained with **COSPINU2** and time evolution of the two spin isomers

~ 5 - 6 μ m amorphous and porous H₂O saturated with H₂. IR spectra in the range 4050-4200 cm⁻¹ obtained with **COSPINU2** and time evolution of the two spin isomers

~ 5 - 6 μ m amorphous and porous H₂O saturated with H₂. IR spectra in the range 4050-4200 cm⁻¹ obtained with **COSPINU2** and time evolution of the two spin isomers

~ 5 - 6 μ m amorphous and porous H₂O saturated with H₂. IR spectra in the range 4050-4200 cm⁻¹ obtained with **COSPINU2** and time evolution of the two spin isomers

	(SPICES) LERMA In situ	FORMOLISM (1) After desorption	Sugimoto (2) After desorption	<i>Ueta</i> (3) After desorption	COSPINU2 (5 - 6 µm H ₂ O) in situ	COSPINU2 (~ 3.5 µm H ₂ O) in situ
t (min)	H ₂ : 220 (17)	H ₂ : >300	H ₂ : 8 (2)	H ₂ : 52 (5)	H ₂ : 376 (25)	H ₂ : 273 (15)
H ₂ coverage	1ML	0.3 - 0.75 ML	1 - 2 ML	0.3 - 1 ML	1ML	1ML

• O_2 molecules have a high magnetic moment, and O_2 impurities in the system may significantly decrease the conversion time.

(1) Chehrouri, Fillion et al. PCCP 2011

- (2) Sugimoto & Fukutani. Nature Physics 2011
- (3) Ueta, Watanabe, Hama, Kouchi. PRL 2016

Experiment :

- The NSC of H₂ on ASW has been studied with different techniques. There is a large discrepancy with the data collected in the literature.
- Measurements with COSPINU2 will be done on a large time scale to investigate the temporal dynamics and the temperature dependence of the NSC
- Developments are in progress to investigate the link between in situ OPR of H₂ and the OPR after thermal and non thermal desorption.

The measurements carried out with FORMOLISM and COSPINU2 give similar characteristic times.

Thank you for your attention !

PROCESSES THAT GOVERN THE ORTHO TO PARA RATIO IN THE PDR CODE AND H_2O CHEMISTRY

Species	H_2	H_2O	H_2^+	H_3^+	H_2O^+	H_3O^+
Excitation						

Reaction chain for the H_2O **formation :**

 $OH + H_2 \longrightarrow H_2O + H$ $O^+ + H_2 \longrightarrow OH^+ + H$ $OH^+ + H_2 \longrightarrow H_2O^+ + H$ $H_2O^+ + H_2 \longrightarrow H_3O^+ + H$ $H_3O^+ + e^- \longrightarrow H_2O + H$

Duplication with ortho/para forms of
reactions and all reactions where
$$H_2^+$$

appear.
Use of UGAN, Rist+ 2013, Oka 2004, Si

the 5 H_2O -forming $^{+}, H_{2}O^{+} \text{ and } H_{3}O^{+}$

ipilä+ 2015

Between 300-400 more reactions than without OP chemistry

ORION BAR : H_2O **CHEMISTRY**

0 ₂	t (min) IR Vib (SPICES) LERMA	t (min) Laser FORMOLISM (1)	t (min) Laser Sugimoto (2)	t (min) Laser <i>Ueta</i> (3)
0.2 %		H ₂ : 3.7 (1) D ₂ : 11 (1)		
0.1 %	H ₂ : 30 (2)			
0.02 %		D ₂ : 51 (4)		
0 %	H ₂ : 220 (17)	H ₂ : >300	H ₂ : 8 (2) D ₂ : 49 (38)	H ₂ : 52 (5)
Coverage	1ML	0.3 - 0.75 ML	1 - 2 ML	0.3 - 1 ML

- (1) Chehrouri, Fillion et al PCCP 2011
- (2) Sugimoto & Fukutani Nature Physics 2011
- (3) Ueta, Watanabe, Hama, Kouchi PRL 2016

