

Classical density functional theory: Application to supercritical CO₂

CMIS

Mohamed Houssein Mohamed, Francesca Ingrosso, Antoine Carof

SFP 2023 Congress, 04/07/2023, Paris

Supercritical Fluid (SCF): above the critical point!

solid

liquid

triple point

250

200

supercritical

fluid

350

400

critical point

Gas

300 Temperature

T (K)

	Simulation	Empiric
Efficiency		
Cost		
Flexibility		

	Simulation	Empiric
Efficiency	4	
Cost	7	
Flexibility	4	

	Simulation	Empiric
Efficiency	4	4
Cost	7	7 .
Flexibility		7 .

	Simulation	Empiric
Efficiency	4	4
Cost	7.	7 .
Flexibility	4	7

We need a fast and accurate method

Free energy functional: $\mathcal{F}[
ho]=\Omega[
ho]-\Omega[
ho_0]$ Not electronic DFT!

Free energy functional: $\mathcal{F}[
ho]=\Omega[
ho]-\Omega[
ho_0]$ Not electronic DFT!

$$\mathcal{F}[\rho] \longrightarrow \frac{\delta \mathcal{F}[\rho]}{\delta \rho} \Big|_{\rho = \rho_{eq}} = 0 \longrightarrow \begin{array}{c} \text{Structure} & \rho_{eq} \\ \text{Free energy} & \mathcal{F}[\rho_{eq}] \end{array}$$

Free energy functional: $\mathcal{F}[
ho] = \Omega[
ho] - \Omega[
ho_0]$ Not electronic DFT!

$$\mathcal{F}[\rho] \longrightarrow \frac{\delta \mathcal{F}[\rho]}{\delta \rho} \Big|_{\rho = \rho_{eq}} = 0 \longrightarrow \begin{array}{c} \text{Structure} & \rho_{eq} \\ \text{Free energy} & \mathcal{F}[\rho_{eq}] \end{array}$$

How to construct the free energy functional?

Free energy functional:
$$\mathcal{F}[\rho] = \Omega[\rho] - \Omega[\rho_0]$$
 Not electronic DFT
 $\mathcal{F}[\rho] = \mathcal{F}_{id}[\rho] + \mathcal{F}_{ext}[\rho] + \mathcal{F}_{exc}[\rho]$
Ideal part Solute-Solvent interaction Unknown interaction
Litterature: $\mathcal{F}_{exc}[\rho] = Hard sphere + \begin{array}{c} Attrative \\ potential \\ CO_2 and solute as a sphere \end{array}$

Objectives: cDFT with good accuracy + molecular description + evolution with P,T ¹³

Construction of
$$\mathcal{F}_{exc}[\rho]$$

Molecular DFT
$$ho=
ho({f r},\omega)$$
 Positon + orientation!

Construction of
$$\mathcal{F}_{exc}[\rho]$$

$$\begin{array}{ll} \text{Molecular DFT} & \rho = \rho(\mathbf{r},\omega) & \text{Positon + orientation!} \\ \mathcal{F}_{\text{exc}}[\rho(r,\omega] = -\frac{1}{2}\beta^{-1}\int d1d2c\,(12)\,\Delta\rho\,(1)\,\Delta\rho\,(2) + \mathcal{F}_{\text{B}} \\ & \text{quadratic term} & \text{beyond the second order} \end{array}$$

First approximation

$$\mathcal{F}_{\mathrm{B}} = 0$$

Construction of
$$\mathcal{F}_{exc}[\rho]$$

$$\begin{array}{ll} \text{Molecular DFT} & \rho = \rho(\mathbf{r}, \omega) & \text{Positon + orientation!} \\ \mathcal{F}_{\text{exc}}[\rho(r, \omega] = -\frac{1}{2}\beta^{-1}\int d1d2c\,(12)\,\Delta\rho\,(1)\,\Delta\rho\,(2) + \mathcal{F}_{\text{B}} \\ & \text{quadratic term} & \text{beyond the second order} \\ \\ \text{First approximation} & \mathcal{F}_{\text{B}} = 0 \\ & \mathcal{F}_{\text{exc}}[\rho(r, \omega)] = -\frac{1}{2}\beta^{-1}\int d1d2c\,(12)\,\Delta\rho\,(1)\,\Delta\rho\,(2) \\ \end{array}$$

Our strategy: RDF from simulation of bulk CO₂ + Ornstein-Zernicke to get the direct correlation function 16

Construction of
$$\mathcal{F}_{exc}[\rho]$$

$$\begin{array}{ll} \text{Molecular DFT} & \rho = \rho(\mathbf{r}, \omega) & \text{Positon + orientation!} \\ \mathcal{F}_{\text{exc}}[\rho(r, \omega] = -\frac{1}{2}\beta^{-1}\int d1d2c\,(12)\,\Delta\rho\,(1)\,\Delta\rho\,(2) + \mathcal{F}_{\text{B}} \\ & \text{quadratic term} & \text{beyond the second order} \\ \\ \text{First approximation} & \mathcal{F}_{\text{B}} = 0 \\ & \mathcal{F}_{\text{exc}}[\rho(r, \omega)] = -\frac{1}{2}\beta^{-1}\int d1d2c\,(12)\,\Delta\rho\,(1)\,\Delta\rho\,(2) \\ \end{array}$$

Our strategy: RDF from simulation of bulk CO₂ + Ornstein-Zernicke to get the direct correlation function 17

Direct correlation function

 $\rho = 0.8 \rho_c$

 $T = 1.05 T_{c}$

13500 CO₂

60 ns

Direct correlation function

Direct correlation function

60 ns

Application of cDFT with spherical solute

Application of cDFT with spherical solute

MD: 32 ns, 4000 CO₂, NVT (34h on 32 cores) cDFT: 2 minutes on 1 core

cDFT is 10⁵ faster than MD!

Application of cDFT with molecular solute

Conclusion

Classical DFT gives excellent structure!

Look into solvation free energy

Study more complex solutes and test cDFT with MDCaffeine H_3C $C_{H_3}C$ Caffeine H_3C $C_{H_3}C$

Find a method to generalise the calculation of direct correlation function for a given P and T

The team

Daniel Borgis

Antoine Carof

Gustave Szczepan

Luc Belloni

The team

Francesca Ingrosso

Daniel Borgis

Thank you!

Antoine Carof

Luc Belloni

Gustave Szczepan

MD simulations details

Canonical ensembe NVT at T = 1.05 T_ N=13500 and ρ = 0.8 ρ_{c}

Rigid CO_2 EPM2 Force field : 3 sites = LJ + charge

Near critical point : simulation of 62 ns

Trajectories were printed every 5 ps : 12000 configurations

Periodic boundary condition (PBC)

