

Making correlations between photonic orbital angular momenta by interaction of optical vortices in a vapor

Project supervised by Laurence Pruvost

vortex+light in the style of Klimt (Al generated)

Myrann ABOBAKER

Orbital Angular Momentum of the optical vortex

• Optical vortices are laser beams with an helical wavefront. They carry a quantum variable, the **OAM**¹ ℓ , being a relative integer. It is related to the phase and the handedness

• To generate one, a laser beam propagates through an object that has an helical singularity

 Anular intensity of a vortex images² recorded with a CCD camera

OAMs correlations study

The OAM is used in several applications such as for quantum memories¹ or entanglement²...

We use this variable to make and study OAMs entanglement

 \rightarrow Thanks to a non-linear effect, it is possible to build correlations between pairs of OAMs

Plan

- The non-linear effect: Spontaneous Four Wave Mixing
- Principle of the model
- Comparison to experimental data
- Prediction for next experiment

Entangled photon sources

Emission of photons pairs

- Spontaneous Down Conversion (SPDC)
- In crystals
- One input laser (continuous or pulsed)
- To be spectrally selective, the crystal must be well prepared

- In vapors
- Two input lasers (continuous or pulsed)
- Realizable with different atomic schemes

We realize SFWM with vortex beams to study both:

- colors entanglement
- OAMs entanglement

OAMs and Spontaneous Four Wave Mixing

- If the two input colors carry an OAM, the output vortices have **correlated OAMs**
- SFWM allows an unambiguous study of the output OAMs
- The blue light intensity and phase have been measured in experiments done in Glasgow¹, Williamsburg² and Paris³

Develop a model to study the output

Rb cell

The output is expressed as $\sum_{\ell_3,\ell_4} c(\ell_3,\ell_4) \times LG_{p_3}^{\ell_3} \times LG_{p_4}^{\ell_4}$ How the total OAM is distributed?

How the total OAM is distributed?

Hypothesis:
$$\boldsymbol{\ell}_1 \ge 0$$
, $\boldsymbol{\ell}_2 \ge 0$ and $\boldsymbol{p}_1 = \boldsymbol{p}_2 = 0$

Conservation of the total **OAM** and the **Gouy phase**

$$L = \ell_{3} + \ell_{4} = \ell_{1} + \ell_{2}$$
$$|\ell_{3}| + |\ell_{4}| + 2p_{3} + 2p_{4} = |\ell_{1}| + |\ell_{2}|$$

All radial number **p** are null **L+1** pairs (ℓ_3, ℓ_4) at the output: (0,*L*), (1,*L*-1), (2,L-2) ... (L-1,1), (*L*,0)

Laguerre-Gauss basis

Boyd's criterion assumption: beams have same Rayleigh range

$$c(\ell_3,L-\ell_3) \propto \iint LG^{\ell_1}LG^{\ell_2}LG^{\ell_3}LG^{\ell_4}rdrd heta$$
 (overlap of 4 modes)

- Each curve represents a family of pairs $(\boldsymbol{\ell}_3 \boldsymbol{\ell}_4)$
- With *L* increasing, there is more than one pair at the output

Blue output for L=2 $E_4 = \sum_{\ell_4}^2 c(L-\ell_4,\ell_4) \times LG^{\ell_4}$

 $\overline{c(2,0)}=0.08$ c(0,2)=0.93c(1,1)=0.37

Three modes at

the output, one

predominant

The **coherent** sum gives a crescent moon intensity

Annular intensity if incoherent

Experimental data from A. Chopinaud. Atomes et vortex optiques, Physique Atomique.Université Paris Saclay (2018)

Comparison to experiment for L=2

Does information on the OAM remains?

For single OAM beams, we use a Mach-Zehnder interferometer added by a Dove prism (DMZ) **The number of radial interference fringes is equal to twice the OAM**

A Dove prism return the field

If L=20 at input: 21 modes in output

- It becomes hard to count the fringes •
- Theory-experiment agreement .
- Explained by a partially coherent • superposition of modes? Work in progress

Coherent

Partially coherent

Prediction for the symmetric scheme

The distribution of the OAM is equiprobable

2

Different expected signatures

Symmetric (Strong correlations)

Conclusion

- Even with partially coherence, signature of OAM correlations between the pairs (ℓ_3, ℓ_4) remain (in progress)
- The model explains the experimental results
- And also for prediction !

Outlook

•

- About the experiment: detect the infrared beam
 - apply multimode inputs
 - realize the symmetric scheme
- To try configurations where *l*¹ and *l*² have opposite handedness

Merci beaucoup :)

Myrann Abobaker

Laurence Pruvost

PALM