

Making correlations between photonic orbital angular momenta by interaction of optical vortices in a vapor

Project supervised by Laurence Pruvost

vortex+light in the style of Klimt (AI generated)

Orbital Angular Momentum of the optical vortex

- Optical vortices are laser beams with an helical wavefront. They carry a quantum variable, the $\mathbf{O A M}^{1} \ell$, being a relative integer. It is related to the phase and the handedness
- To generate one, a laser beam propagates through an object that has an helical singularity

Spatial Light Modulator (SLM)

- Anular intensity of a vortex images 2 recorded with a CCD camera

OAMs correlations study

The OAM is used in several applications such as for quantum memories ${ }^{1}$ or entanglement ${ }^{2}$...
We use this variable to make and study OAMs entanglement
\rightarrow Thanks to a non-linear effect, it is possible to build correlations between pairs of OAMs

Plan

- The non-linear effect: Spontaneous Four Wave Mixing
- Principle of the model
- Comparison to experimental data
- Prediction for next experiment

Entangled photon sources

Emission of photons pairs

- Spontaneous Down Conversion (SPDC)
- In crystals
- One input laser (continuous or pulsed)
- To be spectrally selective, the crystal must be well prepared

- Spontaneous Four Wave Mixing (SFWM)
- In vapors
- Two input lasers (continuous or pulsed)
- Realizable with different atomic schemes

We realize SFWM with vortex beams to study both:

- colors entanglement

- OAMs entanglement

OAMs and Spontaneous Four Wave Mixing

- If the two input colors carry an OAM, the output vortices have correlated OAMs
- SFWM allows an unambiguous study of the output OAMs
- The blue light intensity and phase have been measured in experiments done in Glasgow ${ }^{1}$, Williamsburg ${ }^{2}$ and Paris ${ }^{3}$

Develop a model to study the output

Hypothesis: $\ell_{1} \geq 0, \ell_{2} \geq 0$ and $\boldsymbol{p}_{1}=\boldsymbol{p}_{2}=0$
Conservation of the total OAM and the Gouy phase

$$
\left.\begin{array}{c}
\boldsymbol{L}=\ell_{3}+\ell_{4}=\ell_{1}+\ell_{2} \\
\left|\ell_{3}\right|+\left|\ell_{4}\right|+2 p_{3}+2 \boldsymbol{p}_{4}=\left|\ell_{1}\right|+\left|\ell_{2}\right|
\end{array}\right\} \begin{gathered}
\text { All radial number } \boldsymbol{p} \text { are null } \\
\boldsymbol{L + 1} \text { pairs }\left(\ell_{3}, \ell_{4}\right) \text { at the output: } \\
(0, L),(1, L-1),(2, L-2) \ldots(L-1,1),(L, 0)
\end{gathered}
$$

Boyd's criterion assumption: beams have same Rayleigh range

$$
c\left(\ell_{3}, L{\underset{\ell}{\ell}}^{-\ell_{3}}\right) \propto \iiint G_{\text {(overlap of } 4 \text { modes) }}^{L G^{\ell_{1}} L G^{\ell_{2}} L G^{\ell_{3}} L G^{\ell_{4}} r d r d \theta}
$$

- Each curve represents a family of pairs $\left(\ell_{3}, \ell_{4}\right)$
- With L increasing, there is more than one pair at the output

Blue output for L=2 $\operatorname{lof}_{\ell_{4}} \quad E_{4}=\sum_{\ell_{4}}^{2} c\left(L-\ell_{4}, \ell_{4}\right) \times L G^{\ell_{4}}$

The coherent sum

Annular intensity if incoherent

Comparison to experiment for $\mathrm{L}=2$

Does information on the OAM remains?

For single OAM beams, we use a Mach-Zehnder interferometer added by a Dove prism (DMZ) The number of radial interference fringes is equal to twice the OAM

If L=20 at input: 21 modes in output

- It becomes hard to count the fringes
- Theory-experiment agreement
- Explained by a partially coherent superposition of modes? Work in progress

Coherent

Partially coherent

Prediction for the symmetric scheme

The distribution of the OAM is equiprobable

Different expected signatures

Conclusion

- Even with partially coherence, signature of OAM correlations between the pairs $\left(\ell_{3}, \ell_{4}\right)$ remain (in progress)
- The model explains the experimental results
- And also for prediction!

Outlook

- About the experiment: - detect the infrared beam
- apply multimode inputs
- realize the symmetric scheme
- To try configurations where l_{1} and l_{2} have opposite handedness

Merci beaucoup :)

Myrann Abobaker

Laurence Pruvost

PALM

