A fast rotating superfluid on a curved surface

Romain Dubessy & BEC group

Laboratoire de physique des lasers, CNRS UMR 7538
Université Sorbonne Paris Nord, Villetaneuse, France

26ème Congrès de la SFP - 3–7 Juillet 2023
MC16 – Fluides classiques et quantiques hors équilibre
Dynamics of quantum gases: superfluidity
Specific dynamical properties

Quantum gases with weak repulsive interactions are superfluid. Superfluidity is a dynamic property with subtle effects.

- absence of viscosity, leading to persistent currents in a circular guide
Quantum gases with weak repulsive interactions are **superfluid**. Superfluidity is a **dynamic property** with subtle effects.

- **absence of viscosity**, leading to **persistent currents** in a circular guide
- **critical velocity** $v_c = c$ for excitations (Landau criterion) [data: 2D gas, Desbuquois, Nat. Phys. 2012, picture: polaritons, Amo Nat. Phys. 2009]
Dynamics of quantum gases: superfluidity
Specific dynamical properties

Quantum gases with weak repulsive interactions are superfluid. Superfluidity is a dynamic property with subtle effects.

- absence of viscosity, leading to persistent currents in a circular guide
- critical velocity \(v_c = c \) for excitations (Landau criterion) [data: 2D gas, Desbuquois, Nat. Phys. 2012 picture: polaritons, Amo Nat. Phys. 2009]

- hydrodynamic behaviour with irrotational flow: quantized circulation and quantized vortices in a rotating gas
Dynamics of quantum gases: superfluidity
Specific dynamical properties

Quantum gases with weak repulsive interactions are **superfluid**. Superfluidity is a **dynamic property** with subtle effects.

- **absence of viscosity**, leading to **persistent currents** in a circular guide
- **critical velocity** \(v_c = c \) for excitations (Landau criterion) \[\text{[data: 2D gas, Desbuquois, Nat. Phys. 2012 picture: polaritons, Amo Nat. Phys. 2009]}\]
- **hydrodynamic behaviour** with irrotational flow: quantized circulation and **quantized vortices** in a rotating gas

Interest of cold atoms for studying superfluidity: great **flexibility** in the control of the **confinement geometry** (harmonic traps, rings, lattices, low dimensions. . .)
Dynamics of quantum gases: superfluidity

Specific dynamical properties

Quantum gases with weak repulsive interactions are superfluid. Superfluidity is a dynamic property with subtle effects.

- absence of viscosity, leading to persistent currents in a circular guide
- critical velocity \(v_c = c \) for excitations (Landau criterion) [data: 2D gas, Desbuquois, Nat. Phys. 2012 picture: polaritons, Amo Nat. Phys. 2009]

- hydrodynamic behaviour with irrotational flow: quantized circulation and quantized vortices in a rotating gas

Interest of cold atoms for studying superfluidity: great flexibility in the control of the confinement geometry (harmonic traps, rings, lattices, low dimensions...)

In this talk: a superfluid rotating in a bubble trap.
Physics in a bubble

rf-induced adiabatic potentials — the dressed quadrupole trap

Adiabatic potentials for rf-dressed atoms

Ingredients: inhomogeneous B field + strong rf field, coupling Ω_{rf}

Here: quadrupole field, magnetic gradient b'

- local B and rf fields: atomic spin follows **adiabatically** a local eigenstate
- local eigenenergy acts as a **potential**
- atoms are **strongly confined** to a resonant isomagnetic surface

$$\mu B(r) = \hbar \omega$$

- **smooth** surface potentials
- cooling with an **rf knife**.

For a quadrupole field: ellipsoidal **isomagnetic surface**

$$x^2 + y^2 + 4z^2 = r_0^2$$

with $r_0 \propto \omega / b'$.

Trapping atoms on a surface
A smooth two-dimensional trap

\[\omega_z \propto \frac{b'}{\sqrt{\Omega_{rf}}} \sim 1 \text{ kHz} \]

\[\omega_x, \omega_y \propto \sqrt{\frac{g}{r_0}} \sim 20-50 \text{ Hz} \]

- very flat \(\omega_z \gg \omega_x, \omega_y \)
- in-plane anisotropy \(\eta = \frac{\omega_x}{\omega_y} \) controlled through rf polarization:
 - rotationally invariant \((\eta = 1) \) for a \(\sigma^+ \) polarization along \(z \)
 - anisotropic \((\eta \neq 1) \) for linear horizontal polarization
Trapping atoms on a surface
A smooth two-dimensional trap

\[\omega_z \propto \frac{b'}{\sqrt{\Omega_{\text{rf}}}} \sim 1 \text{ kHz} \]
\[\omega_x, \omega_y \propto \sqrt[4]{\frac{g}{r_0}} \sim 20-50 \text{ Hz} \]

- very flat \(\omega_z \gg \omega_x, \omega_y \)
- in-plane anisotropy \(\eta = \frac{\omega_x}{\omega_y} \) controlled through rf polarization:
 - rotationally invariant (\(\eta = 1 \)) for a \(\sigma^+ \) polarization along \(z \)
 - anisotropic (\(\eta \neq 1 \)) for linear horizontal polarization
- geometry can be modified dynamically
- ideal for the study of the 2D trapped gas dynamics

[Dubessy NJP 2014]

Romain Dubessy – 26ème Congrès de la SFP
Why rotations?
Quantum Hall effect with atoms

ideal 2D trapped rotating atomic gas

$H = \hbar \omega_r \left(\hat{a}_x^{\dagger} \hat{a}_x + \hat{a}_y^{\dagger} \hat{a}_y \right) - \Omega \hat{L}_z$

$E = n \hbar \omega_r$

Landau level structure

- Highly degenerate groundstate
- Small energy gap

$\Omega = 0$

$\Omega = \omega_r^2 \hbar \omega_r$

$\Omega = \omega_r / 2$

$\Omega = \omega_r^2 / 2 \hbar \omega_r$

Lattices
Why rotations?
Quantum Hall effect with atoms

ideal 2D trapped rotating atomic gas \leftrightarrow 2D electron gas with a uniform magnetic field

$$H = \hbar \omega_r \left(\hat{a}^\dagger_x \hat{a}_x + \hat{a}^\dagger_y \hat{a}_y \right) - \Omega \hat{L}_z$$

$E = n\hbar \omega_r$

$\Omega = 0$

$\Omega = \omega_r/2$

Landau level structure \Rightarrow highly degenerate groundstate

Small energy gap \Rightarrow increased role of temperature
Why rotations?
Quantum Hall effect with atoms

ideal 2D trapped rotating atomic gas ↔ 2D electron gas with a uniform magnetic field

\[H = \hbar \omega_r \left(\hat{a}_x^\dagger \hat{a}_x + \hat{a}_y^\dagger \hat{a}_y \right) - \Omega \hat{L}_z \]

\[E = n \hbar \omega_r \]

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\Omega = 0)</td>
<td>(\Omega = \omega_r/2)</td>
</tr>
</tbody>
</table>

Landau level structure \(\Rightarrow \) highly degenerate groundstate

Small energy gap \(\Rightarrow \) increased role of temperature
Vortex crystals
Low energy modes & melting transition

- for $\Omega \leq \omega_r$ groundstate is a large Abrikosov lattice
- with well defined modes:
 - longitudinal (Kelvin)
 - in plane: elasticity of the lattice
- Thermal population of the modes can melt the lattice...
 never observed in BEC!
Vortex crystals
Low energy modes & melting transition

\[\omega_r/\omega_z = 4.2 \]

\[\Omega \leq \omega_r \] groundstate is a large Abrikosov lattice

- longitudinal (Kelvin)
- in plane: elasticity of the lattice

Thermal population of the modes can melt the lattice...
never observed in BEC!

for $\Omega \leq \omega_r$ groundstate is a large Abrikosov lattice

with well defined modes:
- longitudinal (Kelvin)
- in plane: elasticity of the lattice

Thermal population of the modes can melt the lattice...
never observed in BEC!
Vortex crystals
Low energy modes & melting transition

- for $\Omega \leq \omega_r$ groundstate is a large Abrikosov lattice
- with well defined modes:
 - longitudinal (Kelvin)
 - in plane: elasticity of the lattice

- Thermal population of the modes can melt the lattice...

- To lower T_m/T_c: decrease $\omega_r/\omega_z \Rightarrow$ go 2D !
- bubble: $\omega_r/\omega_z \leq 0.1$

$\omega_r/\omega_z = 4.2$
$T_m/T_c \sim 0.78$
$T_m/T_c \sim 5.89$

[Abo-Shaer Science 2001]
[Coddington PRL 2003]
[Bretin PRL 2004]
Vortex lattice in fast rotating bubble trap
A first quick look

- Start from a degenerate cloud at rest at the bottom of the bubble, $\omega_r = 2\pi \times 34$ Hz
- Induce an in-plane elliptic deformation
 \[V(r) = M\omega_r^2/2 \times [(1 - \epsilon)x'^2 + (1 + \epsilon)y'^2] + ... \]
- Rotate the trap main axes x', y' at frequency Ω_{rot}
- Restore the rotationally invariant trap

Increasing Ω_{rot}...

Blue dashed circle: Thomas-Fermi radius after 27 ms time-of-flight

$\Omega_{\text{Rot}}/(2\pi) = 20$ Hz

$\epsilon = 0.18$
Vortex lattice in fast rotating bubble trap
A first quick look

- Start from a degenerate cloud at rest at the bottom of the bubble, $\omega_r = 2\pi \times 34$ Hz
- Induce an in-plane elliptic deformation
 \[V(r) = M\omega_r^2/2 \times [(1 - \epsilon)x'^2 + (1 + \epsilon)y'^2] + \ldots \]
- Rotate the trap main axes x', y' at frequency Ω_{rot}
- Restore the rotationally invariant trap

Increasing Ω_{rot}...

Blue dashed circle: Thomas-Fermi radius after 27 ms time-of-flight

$\omega_r = 2\pi \times 34$ Hz

$\Omega_{\text{Rot}}/(2\pi) = 20$ Hz $\quad 21$ Hz

$\epsilon = 0.18$
Vortex lattice in fast rotating bubble trap
A first quick look

- Start from a degenerate cloud at rest at the bottom of the bubble, $\omega_r = 2\pi \times 34$ Hz
- Induce an in-plane elliptic deformation rf polarization
 \[V(r) = M \omega_r^2/2 \times [(1 - \epsilon)x'^2 + (1 + \epsilon)y'^2] + \ldots \]
- Rotate the trap main axes x', y' at frequency Ω_{rot}
- Restore the rotationally invariant trap

Increasing Ω_{rot}... disordered lattice...

Blue dashed circle: Thomas-Fermi radius after 27 ms time-of-flight $\epsilon = 0.18$
Vortex lattice in fast rotating bubble trap
A first quick look

- Start from a degenerate cloud at rest at the bottom of the bubble, $\omega_r = 2\pi \times 34$ Hz
- Induce an in-plane elliptic deformation
 $$V(r) = M\omega_r^2/2 \times [(1 - \epsilon)x'^2 + (1 + \epsilon)y'^2] + ...$$
- Rotate the trap main axes x', y' at frequency Ω_{rot}
- Restore the rotationally invariant trap

Increasing Ω_{rot}... disordered lattice... melting?

Blue dashed circle: Thomas-Fermi radius after 27 ms time-of-flight

\[\epsilon = 0.18 \]
Vortex lattice in fast rotating bubble trap

A first quick look

- Start from a degenerate cloud at rest at the bottom of the bubble, $\omega_r = 2\pi \times 34$ Hz
- Induce an in-plane elliptic deformation

 \[V(\mathbf{r}) = \frac{M\omega_r^2}{2} \times [(1 - \epsilon)x'^2 + (1 + \epsilon)y'^2] + \ldots \]
- Rotate the trap main axes x', y' at frequency Ω_{rot}
- Restore the rotationally invariant trap

Increasing Ω_{rot}... disordered lattice... melting?

Blue dashed circle: Thomas-Fermi radius after 27 ms time-of-flight

We need to measure N, Ω, T and compare to $T_m(N, \Omega)$...
Rotation control
Stirring and evaporating

Effective rotation Ω/ω_r

- with post-stirring rf ramp $80 \rightarrow 60$ kHz
 - allows to reach $\Omega \sim \omega_r$
 - at constant $T \sim 18$ nK
Rotation control

Stirring and evaporating

Effective rotation Ω/ω_r

with post-stirring rf ramp 80 → 60 kHz

- allows to reach $\Omega \sim \omega_r$
- at constant $T \sim 18 \text{ nK}$

Counting vortices

- top view, 27 ms tof
Rotation control
Stirring and evaporating

Counting vortices
- top view, 27 ms tof
- enhance visibility

Effective rotation Ω/ω_r

with post-stirring rf ramp 80 \rightarrow 60 kHz

- allows to reach $\Omega \sim \omega_r$
- at constant $T \sim 18$ nK
Rotation control
Stirring and evaporating

Effective rotation Ω/ω_r

- with post-stirring rf ramp 80 → 60 kHz
- allows to reach $\Omega \sim \omega_r$
- at constant $T \sim 18$ nK

Counting vortices
- top view, 27 ms tof
- enhance visibility
- detect positive curvature

A fast rotating superfluid on a curved surface

Romain Dubessy – 26ème Congrès de la SFP
Quantitative study of the vortex lattice

Vortex-vortex correlations
Thermal melting of the vortex lattice?

Studying a quasi-2D crystal

quasi 2D rotating Bose gas $T_m \leq 0.23 T_{BKT}$

[Giord PRA 2008]

upper bound on melting temperature

(computed using low energy modes of the crystal lattice & KTHNY theory)

studied in many systems: supraconductors, colloids, ...

Thermal melting of the vortex lattice?

Studying a quasi-2D crystal

quasi 2D rotating Bose gas $T_m \leq 0.23 T_{BKT}$

[Giﬀord PRA 2008]

upper bound on melting temperature

(computed using low energy modes of the crystal lattice & KTHNY theory)

studied in many systems: supraconductors, colloids, ...

What is T_{BKT}?

semi-classical + LDA + D_c from QMC
Thermal melting of the vortex lattice?

Studying a quasi-2D crystal

quasi 2D rotating Bose gas $T_m \leq 0.23 T_{BKT}$

[Giﬀord PRA 2008]

upper bound on melting temperature

(computed using low energy modes of the crystal lattice & KTHNY theory)

studied in many systems: supraconductors, colloids, ...

What is T_{BKT}?

semi-classical + LDA + \mathcal{D}_c from QMC

Remember: rf-knife sets the temperature $T \simeq 18$ nK,

$\tau = T/T_{BKT}$

Qualitative agreement: change in $g(r)$ as T / T_m varies.
Can we rotate even faster?
Fighting the centrifugal force

To restore the trapping potential, add a quartic term to $V(r)$:

$$V_{\text{eff}}(r) = \frac{M}{2}(\omega_r^2 - \Omega^2)r^2 + \lambda r^4.$$

[Bretin PRL 2004]

$\Omega = 0$
$\Omega = \omega_r$
$\Omega = 1.15 \omega_r$

\Rightarrow the bubble trap has higher order terms.
Theoretical predictions
Rotating beyond the trapping frequency

Giant vortex in a harmonic + quartic trap:

vortex lattice
dynamical ring

Singly quantized vortex array
Singly quantized array with hole
Multiple quantization

Interaction strength
Rotation rate

50 µm

GP simulation for the bubble (quartic approximation)

[Kavoulakis NJP 2003, Fetter PRA 2005]
Creating a dynamical ring
Using the spin-up evaporation

\[\varepsilon = 0.18 \]

stirring at \(\Omega_{\text{stir}} \)

\[\omega_y < \Omega_{\text{stir}} < \omega_x \]

\[\varepsilon = 0.01 \]

\(\Omega_{\text{exc}} \)

(spectroscopy)

\[\omega_{kn}/2\pi \]

65 kHz

forced evaporation

58 kHz

\[\varepsilon = 0 \]

\(\varepsilon = 0.01 \)

stirring at \(\Omega_{\text{stir}} \)

\(\Omega_{\text{exc}} \)

(spectroscopy)

In-situ pictures

-0.2 s

-0.048 s

3 s

20 s

24 s

38 s

71 s

[Guo PRL 2020]

Romain Dubessy – 26\(^{\text{ème}}\) Congrès de la SFP

A fast rotating superfluid on a curved surface
A supersonic flow
Measuring the rotation from time-of-flight expansion

- size2 scales as t_{TOF}^2 (ballistic expansion)
- fit gives: $\Omega \sim 1.05\omega_r$, i.e. $v = 7.4$ mm/s
- peak density $n_0 \sim 15 \, \mu m^{-2}$
 $\Rightarrow c_0 = 0.4$ mm/s

A degenerate gaz flowing at Mach 18!

[see also Pandey Nature 2019]
Summary & prospects

Fast rotations on a shell

A very smooth and tunable shell trap to study fast rotations

- Fine control of the effective rotation
- Vortex lattice melting for $\Omega \sim \omega_r$
- Formation of a long-lived dynamical ring flowing at Mach 18 for tens of second for $\Omega > \omega_r$

⇒ investigate the decay mechanisms
⇒ test the melting scenario (KTHNY)
⇒ play with the curvature in the rotating frame
Thanks for your attention!

The BEC group at Villetaneuse

ANR funded postdoc position available [2 years]

Former PhDs: M. de Goër de Herve, Y. Guo, V. Bagnato, M. Olshanii, A. Minguzzi, S. Nazarenko

Collaborations (on going)

www-lpl.univ-paris13.fr/bec